詳細な地震防災マップの作成について 一高知市の揺れやすさマップを例に一 Compilation of a Detailed Earthquake Disaster Mitigation Map - A Case Study on Earthquake Disaster Mitigation Map of Kochi-shi -

地理調査部 星野 実・木村幸一・木村佳織 Geographic Department Minoru HOSHINO, Koichi KIMURA and Kaori KIMURA 内閣府政策統括官(防災担当)付参事官(地震・火山対策担当)付 檜山洋平 Earthquake and Volcanic Disaster Management Div.,

> Disaster Management Dept., Cabinet Office Yohei HIYAMA

要 旨

詳細な地震防災マップの条件とは、住民の居住す る位置を特定できる縮尺 1/25,000 程度以上,地震防 災情報の表示単位は 50mメッシュ程度で、市町村な ど(場合によっては都道府県)が作成して住民へ配 布する地図である.

本稿では、国土地理院が平成 17 年度に作成した 高知市の詳細な地震防災マップとして作成した、揺 れやすさマップ(地震動マップ)作成を中心に報告 を行う.

揺れやすさマップ作成は内閣府作成のマニュア ルに基づいて実施した.その流れは,各種地形分類 図から 15 区分の微地形区分図の作成→ボーリング データ及び微地形から表層地盤のS波速度(AVS30) の推定→表層地盤での地震動の増幅度推定→地震の 発生源別(海溝型,活断層型,直下型)パラメータ による地震動の設定→地震の発生源別最大予測震度 による揺れやすさマップ作成である.

また,作成マニュアルの改善点の検討,市町村へ 地震防災マップに関するアンケート調査を実施し現 状についてのとりまとめを行った.

1. はじめに

地震防災マップは、関係機関及び地方自治体等で 作成されている.全国を一律の表示内容で作成して いる地震防災マップとしては、内閣府の「表層地盤 の揺れやすさ全国マップ」(図-1,2)、文部科学 省の「全国を概観した地震動予測地図」等があり、 都道府県等でも地震防災マップを作成している.し かし、これらの地震防災マップは、全国及び都道府 県という広域の地域を対象とすることから地図の縮 尺は小縮尺で、揺れやすさなどの表示単位は主に 500m~1kmメッシュである.

一方,今回作成した詳細な地震防災マップ(揺れやすさマップ)は,住民が居住する位置を確認できる程度のもので,縮尺が1/25,000,揺れやすさなど

の表示単位は50mメッシュで作成した.

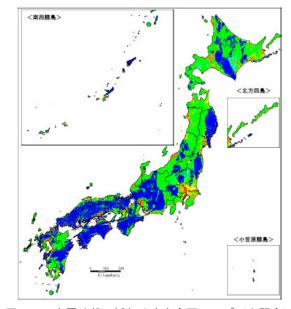


図-1 表層地盤の揺れやすさ全国マップ(内閣府) (1kmメッシュ)

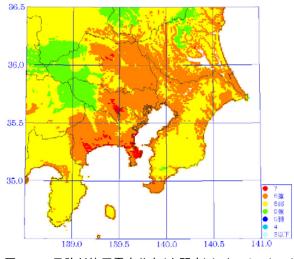


図-2 予防対策用震度分布(内閣府)(1kmメッシュ)

詳細な地震防災マップは,全市町村の 5.5%が作 成しているが(平成17年9月),地震防災対策特別 措置法の一部改正(平成18年4月1日施行)により 今後,市町村は,地震動や地震による被害などを事 前に住民に周知するため詳細な地震防災マップを作 成して配布することが求められることとなった.

この一部改正では、「地震動の大きさ、(中略)地 震災害の程度に関する事項について、これらを記載 した印刷物の配布その他の必要な措置を講ずること により、住民に周知させるように努めなければなら ない.」としており、地震防災マップなどを作成し、 住民に配布して周知することが必要となっている.

2. 詳細な揺れやすさマップの作成

2.1 作成の概要

高知市をケーススタディとして,詳細な揺れやす さマップ(地震動マップ)を内閣府防災担当が作成 した「地震防災マップ作成技術資料(平成 17 年 3 月)」(以下,「マニュアル」という.)により作成し た.

揺れやすさは、震源での地震規模と震源からの距離、該当する地域の表層地盤での揺れの伝わる早さ 及び表層地盤で地震動の増幅する関係(図-3)を もとに 50mメッシュ毎の地震動(揺れやすさ)とし て地図上に表示した.

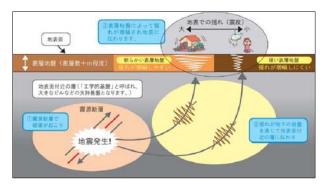


図-3 地震動の伝わり方

作成の概要としては、図-4の揺れやすさマップ 作成作業フローの流れに基づいて行った.表層地盤 の特性を明らかにするため、①各種地形分類図から 今回の微地形区分(15区分)図を作成し、②表層地 盤でのS波速度(AVS30)の推定をボーリングデータ 及び微地形区分から行った.また、③表層地盤での 地震動の増幅度の推定を行い、④震源からの地震動 の設定として、地震の発生源別(海溝型,活断層型, 直下型)のパラメータにより地震動の設定を行い、 ⑤50mメッシュごとの震度(揺れやすさ)を3つの 地震パターン別に地図表現した.さらにそれぞれの 揺れやすさの重ねあわせによる最大震度分布図(揺 れやすさマップ)を作成した. 揺れやすさマップは、50mメッシュ毎に表示し、 背景は 1/25,000 地形図を使用した.なお、作成に当 たっては、汎用の地理情報システム (Arcinfo Workstation 8.1.2)を使用した.

図-4 揺れやすさマップ作成作業フロー

2.2 メッシュの大きさの設定

詳細な揺れやすさマップは、自宅の位置が把握で きる程度の縮尺及びメッシュの大きさで作成するこ とが重要である.このため、メッシュの大きさを50 mとした.

メッシュの設定は, 数値地図 50mメッシュ(標高) を踏襲した. このデータから 50mメッシュポリゴン データを作成した.

2.3 データの収集整理

2.3.1 行政界

行政界データは数値地図 25000(行政界・海岸線) データを使用した.

2.3.2 河川流路

河川流路データは国土数値情報の流路(線)デー タを使用した.50mメッシュポリゴンと河川流路を 重ね合わせ,河川流路が含まれる50mメッシュポリ

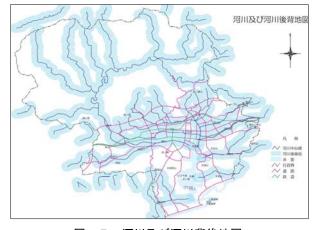


図-5 河川及び河川背後地図

ゴンには河川流路のフラグを付加した.また,河川 後背地算出のため,経緯度座標を平面直角座標に変 換し,500mのバッファを作成した後,経緯度座標に 変換しなおし,50mメッシュポリゴンと重ね合わせ た.

なお、河川流路データは、河川から 500m以内の 「デルタ・三角州」と河川から 500m以内を除いた 「デルタ・三角州」を区別するために用いる(図-5).

2.3.3 ボーリング柱状図

表層地盤の状況を把握するため 30mの深さまで のボーリングデータを使用して、S 波速度を算出す る.S波速度はボーリング柱状図のコア毎に算出し、 ボーリングポイントの表層 30mの平均 S 波速度

(AVS30)を算出する.ボーリングデータの無いメッシュの AVS30の推定は,表層地盤の特性を代表する 微地形から地方別係数により AVS30の推定を行った.

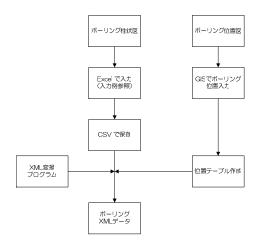


図-6 ボーリング柱状図入力フロー

図-7 ボーリング位置図

今回使用したボーリング柱状図は、「高知地盤図」 の 316 本及び高知市から提供された 85 本の計 401 本について図-6により Excel ファイルに取りまと めを行った.ボーリングの位置(図-7)は、柱状 図に添付されている位置図から管面ディジタイズ入 力を行った. その後 XML フォーマットに再変換し, このデータを,無料配布されているボーリング柱状 図作成ソフトに読み込み,ボーリング柱状図(図-8)を作成した.

ボーリングデータ入力に当たり土質名が資料に より不統一であったため、土質対照表より土質名の 統一化を行った.

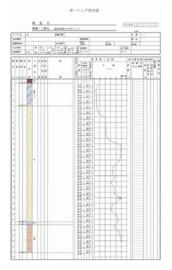


図-8 ボーリング柱状図

2. 4 表層地盤モデルの設定

表層地盤モデルの設定にあたり,各種地形分類図, 標高データ,表層地質図等から揺れやすさマップ作 成に必要な微地形区分項目に再編集して微地形区分 図を作成した(図-12).

2. 4. 1 微地形区分の設定

低地部分の微地形区分のうち,1/25,000 土地条件 図の地形分類データが不足する部分について 1/50,000 地形分類図画像データ「高知」「井野」の 画像を背景に地形分類データを入力し,1/25,000 土 地条件図の地形分類データとの結合を行い,地形分 類図(集成図)の作成を行った(図-9).

また、山地の微地形区分のため、表層地質図(図 -10)の地質年代区分から山地の地質年代推定を行い、第四紀(沖積世,洪積世)、古第三紀以前の区分 を行い、山地の地形区分を行った(図-12).

山地と丘陵地との地形区分は,50mメッシュ標高 データを用いて起伏量図(図-11)を作成して区分 を行った(図-12).

具体的には起伏量が 200m以上の領域及びその領 域より標高の高い部分を山地,起伏量が 200m未満 の領域を丘陵地とした.起伏量は,当該メッシュを 中心とした隣接 10 メッシュにおける標高の最高値 と最低地の差を算出し,当該メッシュの起伏量とし た. なお、人工改変地については、平野部の土地条件 図が最近のものであるためその情報を使用し、丘陵 地などの斜面地域は大規模な人工改変地が少ないた め新旧の地形図による人工改変地の抽出作業は行わ なかった.

以上,低地,山地及び丘陵地の微地形区分を 50 mメッシュポリゴンの属性とした.これらの属性を もとに地形分類対照表に基づき,中央防災会議(内

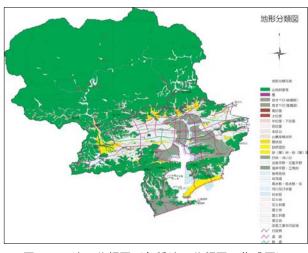


図-9 地形分類図(各種地形分類図の集成図)

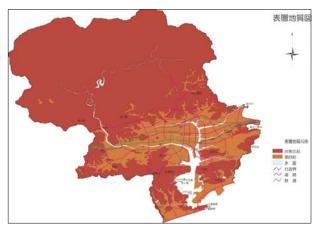


図-10 表層地質図

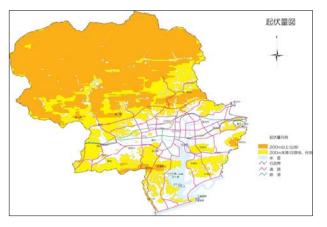


図-11 起伏量図

閣府防災担当 2005b) による微地形区分図を作成した(図-12). なお、15 区分は、古生代・中生代・ 古第三紀、新第三紀、丘陵地、火山・他の地形、砂 礫台地、ローム台地、谷底平野、扇状地、自然堤防、 デルタ・後背地 (D>0.5km、D≦0.5km)、砂丘・砂州、 埋立地・干拓地、人工改変地、水面である(D:主要 河川からの距離).

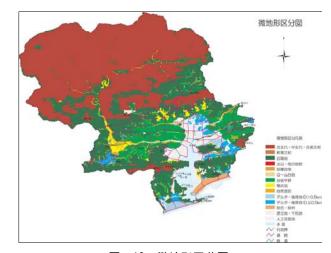


図-12 微地形区分図

2.5 微地形区分と表層S波速度

2.5.1 ボーリング地点における AVS30 の推定 ボーリングデータで使用されている土質は、ボー リングデータをもとに AVS30 を推定する際,砂は砂, 砂礫と岩盤は礫,それ以外は全て粘土とした.また, N 値が測定されていない層は以下の方法で処理を行 った.

(1) 表土

表土は下層と結合した. 直近下層のN値が測定さ れていない場合は,最も直近のN値を表土のN値と した.

(2) 薄層

N値の無い薄層については、図-13の手順に基づき、N値の無い薄層が存在しなくなるまで処理を繰り返し行った.この際、同じ層の判定については、まず土質名で判定を行い、次に土質区分で判定を行った.

- 1) 薄層の上位に同じ層がある場合は、上位層と結合した.
- 2) 薄層の下位に同じ層がある場合は、下位層と結 合した.
- 3) 薄層の上下位共に同じ層が無い場合は、半分ず つ上下位層と結合した.

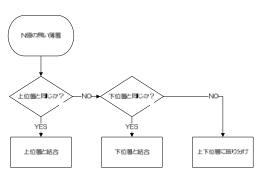
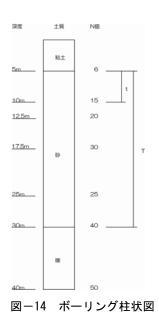


図-13 N 値の無い薄層の処理方法

(3) 平均N値の算出方法

マニュアルでは,平均N値は単純にN値の平均値 を使用しているが,より正確性を期する為に以下の 式に基づき平均N値を算出した.


Ave_N = Σ (t \times N) \div T

 Ave_N:平均N值
 t:層厚
 N:N值

 T:全層厚
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

図-14の場合における砂の平均N値を算出すると、 以下のようになる.

t \times N 5. $0 \times 15 = 75.0$ 2. $5 \times 20 = 50.0$ 5. $0 \times 30 = 150.0$ 7. $5 \times 25 = 187.5$ 5. $0 \times 40 = 200.0$ $\Sigma = 662.5$ T = 30.0 - 5.0 = 25.0 Ave_N = 662.5 (\square)

(4) 有効深度

最下層において N 値を測定していない場合は,最 下層の直近上位層を最下層とした.すなわち,N 値 が測定された最下層の深度をそのボーリングの深度 とした.

(5)有効深度 30m未満のボーリングデータにおけるN値 50以上の基盤の有無

有効深度 30m未満のボーリングデータにおいて, N値50以上の基盤が存在するか否かの判断は以下の ように行った.なおこの判断は,3種類に集約され た土質区分で判断するのではなく,集約前の土質区 分により行った.

- 1) 有効深度におけるボーリング孔底付近で,N値 50 以上を連続3回以上確認してボーリングを止めている場合は,N値50以上の基盤が存在する.
- 2) 有効深度におけるボーリング孔底付近で,N値 50 以上の岩盤部を確認してボーリングを止めている場合は,N値50以上の基盤が存在する.

(6) AVS30 推定プログラムの検証

PS 検層 (PS 検層とは、ボーリングを掘削する際 にボーリングコア毎のS波速度を計測したボーリン グを言う)を実施していないボーリングデータから AVS30 を推定するプログラムを開発した.しかし、 テストデータ及び推定結果のデータが存在しないた め、マニュアルに記載されている「図IV.14 ボーリ ング地点における AVS30 の設定例」のボーリング柱 状図からテストデータ(表-1)を作成した.プロ グラムによる計算結果と資料例における AVS30 の差 は1m/s となった.これは、平均N値の算出方法が 異なることに起因している.数値的な差としては 0.5%程度であるため、AVS30の推定にはこのプログ ラムを用いた.

		1	-	-1 00	6 T 181	2027 68	N /DI
深度	土質名	集約土質	N値	計算 平均N値	結末 VS(m/s)	資料 平均N値	419] VS(m/s)
0.80	S:砂		6	平均回旧	vS(m/s)	平均回旧	v S(m/s)
1.30 2.30 3.30 4.30 5.00		粘土	6 3 5 4 4	4.5	176	4.5	179
5.30 6.30 7.30 9.30 10.30 11.30 12.300 14.30 15.30 16.30 15.30 16.30 15.30 21.30 21.30 22.30 22.30 22.530 26.30 26.75	S:₩	₽	5 80022170999655477188703324155	34.2	286	332	289
27.00 27.30 29.30 30.26 31.13 32.13 32.20	CL:粘土 GI:砂礫	礫	37 45 49 50 50 50	47.6	316	46.8	302
				AVS30	262	AVS30	263

表-1 テストデータ

(7) AVS30の推定

表層地盤(およそ表層から 30m程度まで)において、地震によるS波速度が軟弱地盤の程度が増す毎 に遅くなり、地震動が増幅することが分かっている ため、AVS30の推定を行い、より現実に見合った地 震動を推定するために行う.

AVS30 の推定は、入力したボーリングデータをも とに、行った.この際、掘進深度10m未満及びN値 が測定されていないボーリングデータはAVS30の推 定対象外とした.推定式は以下のとおりである.

$$V_s = a \times N^b$$

- Vs:S波速度(m/s)
- N :N値(層ごとの平均N値)
- a : 土質係数 1 (粘土:111.30,砂:94.38,礫:123.05) b : 土質係数 2
 - (粘土:0.3020,砂:0.3144,礫:0.2443)

(a) 掘進深度 30m以上の場合

- $T_{30} = \Sigma^{n}$ (Hi / Vsi)
 - i= 1
 - T₃₀: 地表から深度 30mまでの S 波速度の到達時 間 (sec)
 - Hi :i層の層厚(m)
 - Vsi:i層のS波速度 (m/s)
- AVS30 = 30 / T₃₀
 - AVS30:地表から深度 30mまでの平均 S 波速度 (m/s)

(b) 掘進深度 30m未満の場合

N 値 \geq 50 基盤が確認できる場合は、基盤深度に最 も近い深さのカテゴリ(10m, 15m, 20m, 25m) までの平均 S 波速度 AVSn (n = 10, 15, 20, 25)を, N 値 \geq 50 基盤が確認できない場合は、掘進深度に最も 近い深さのカテゴリ(10m, 15m, 20m, 25m)ま での平均 S 波速度 AVSn (n = 10, 15, 20, 25)を計算 し、それに基づいて AVS30を以下の式で計算した. この際の係数 a_n 及び b_n は以下のとおりとする.

AVS30 = $a_n \times AVS_n + b_n$ n : 10, 15, 20, 25 $a_n, b_n : AVS_n \ge AVS30$ の回帰式の係数 N 値 \ge 50 基盤が確認できる場合 $a_{10} = 1.441 - 0.222, b_{10} = 58.726, a_{15} = 1.144$ $- 0.097, b_{15} = 43.528$ $a_{20} = 1.083 - 0.079, b_{20} = 29.658, a_{25} = 1.034$ $- 0.014, b_{25} = 7.937$

N 値 ≥ 50 基盤が確認できない場合

 $a_{10} = 0.832 - 0.177, \ \, b_{10} = 59.881, \ \, a_{15} = 0.909 \\ - 0.108, \ \, b_{15} = 37.213 \\ a_{20} = 0.946 - 0.065, \ \, b_{20} = 23.318, \ \, a_{25} = 0.983 \\ - 0.028, \ \, b_{25} = 9.113$

2. 5. 2 微地形区分における AVS30 の推定

ボーリングデータによる AVS30 を算定するのが基本であるが、ボーリングデータのないメッシュの AVS30 の推定を行うため、以下のような微地形区分毎の AVS30 の推定を行い、経験式による全国的な係数による AVS30 の推定及びボーリングデータによる地域的な係数の設定を行った.

入力を行ったボーリングデータ 401 本のうち,30 m以上の掘進深度を有するボーリングデータは 116 本(水面等除く)であった(表-2).各微地形とボ ーリングデータの関係は以下のとおりである.

同一微地形区分に掘進深度 30m以上のボーリン グデータを5本以上有する微地形区分においては, AVS30 を推定する際,地域性を考慮するためボーリ ングデータから推定した AVS30 をもとに係数を設定 した(表-3).設定の方法は中央防災会議「東南海・ 南海地震に関する専門調査会」の経験式(内閣府マ ニュアルによる)の係数のうち,b,c, oの値を固定 し,aの値を変化させて,ボーリングデータから推 定した AVS30 との関係を最も整合させるように設定 した.この際あらかじめ AVS30 の上限値及び下限値 が設定されている「谷底平野」及び標準偏差から外 れるボーリングデータが極めて少なかった「砂丘・ 砂州」,「埋立地・干拓地」に関しては,経験式の係 数をそのまま利用した(表-4).設定した係数は表 -3のとおりである.

上記以外の微地形区分を含めた微地形区分と係 数の関係は表-5のとおりである.

表-2 各微地形区分におけるボーリングデータ数

	★ポーリングデー5数 全ポーリング			無効ポーリン	
	至111-1929 デー91数	84	5~530m 있 上	#15411-55 クテータ数	
ERWÊ.	16	9	0	7	
97 9 230	15	11	2	4	
33 435	172	148	53	24	
	23	13	2	10	
自然现	з	з	2	0	
デルタ・骨級					
温地 (D>	12	6	1	6	
0.5km)	2				
デルタ・備後					
温地 (D≦	21	17	5	4	
0.5km)					
원드·원위	11	10	5	1	
理立地・干朽			46	7	
地	88	81	40	r	
人口的现象	1	0	0	1	
水面等	39	33	18	6	
81	401	331	134	70	

表-3 地域性を考慮した	係数
--------------	----

微地形区分	а	b	с	σ	AV: 下限	上限	ボーリング データ数	標準偏差 外 データ 数
谷底平野	2.08	0.19	0.00	0.15	162	300	53	5
デルタ・後背湿地(D≦0.5km)(前)	2.21	0.00	0.00	0.11			5	2
デルタ・後背湿地(D≦0.5km)(後)	2.34	0.00	0.00	0.11			5	0
砂丘·砂州	2.31	0.00	0.00	0.12			5	0
埋立地・干拓地	2.23	0.00	0.00	0.19			46	2
前:地域性を考慮する前、後:地域性を考慮した後								

表-4 地域性を考慮した係数設定を行い計算した場合 のボーリングデータ状況

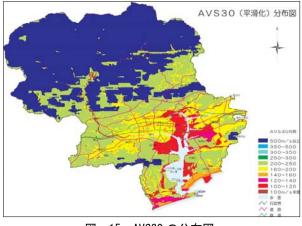

微地形区分	有効ボーリン グデータ数	標準偏差外 デー9数	標準偏差内率
谷底平野	148	16	89.2%
デルタ・後背湿地(D≦0.5km)	17	1	94.1%
砂丘·砂州	10	2	80.0%
埋立地・干拓地	81	6	92.6%

表-5 微地形区分と係数の関係

微地形区分	а	b	с	σ	AVS 下限	530 上限
					下限	上限
古生代・中生代・古第三紀	2.90	0.00	0.00	0.15		
丘陵地	2.51	0.00	0.00	0.16		
砂礫台地	2.48	0.00	0.00	0.14		
谷底平野	2.08	0.19	0.00	0.15	162	300
扇状地	2.49	0.00	0.00	0.10		
自然堤防	2.06	0.26	0.00	0.14	162	400
デルタ・後背湿地(D>0.5km)	2.27	0.00	0.19	0.13		250
デルタ・後背湿地(D≦0.5km)	2.34	0.00	0.00	0.11		
砂丘・砂州	2.31	0.00	0.00	0.12		
埋立地・干拓地	2.23	0.00	0.00	0.19		
人工改変地	2.39	0.00	0.00	0.14		

2. 5. 3 メッシュ毎の AVS30 の推定

メッシュごとの AVS30 の推定は、ボーリング地点 の AVS30 の推定及び微地形区分により推定した AVS30 を空間的に平滑化してメッシュごとの AVS30 の設定を行った (図-15).

図-15 AVS30の分布図

各メッシュにおける AVS30 は以下の式で推定を行った.この際の係数は表-5を使用した.推定に際しては安全を考慮し、-σを用いた.

Log AVS30 = a + b × Log H + c × Log D ± σ AVS30 :表層 30mの平均 S 波速度の推定値 H :標高(m) D :主要河川からの距離(km) a, b, c:係数(微地形区分ごと) σ :標準偏差(微地形区分ごと)

ボーリング地点の AVS30 においても,推計値のば らつきを考慮し,便宜的にボーリング地点の微地形 区分の σ を用いて,以下の式により- σ 相当の値に変 更した.この際あらかじめ AVS30_- σ の上限値及び 下限値が設定されている微地形区分については,計 算結果によっては上限値もしくは下限値を使用した. 推定結果は表-6のとおりである.

表-6 AVS30_-σ推定結果(一部)

ボーリン グ名	AVS30	微地形区分	σ	下 限 値	上限 値	AVS30 σ
1-G-1	0.0	谷底平野	0.15	125	210	0.0
1-J-1		デルタ・後背 湿地(D≦ 0.5km)	0.11			182.0
2-F-2	360.1	扇状地	0.10			286.0
2-G-1	391.3	扇状地	0.10			310.8
2-I-1	234.2	水面等	0.00			234.2
2-I-7	-7 209.0 ^{デ゙ルタ} ・後背 0.5km)		0.11			162.2
2-J-2	221.0	デルタ・後背 湿地(D≦ 0.5km)	0.11			171.6
3-F-1	318.5	砂礫台地	0.14			230.7

AVS30_- σ = 10 ^{logAVS30 - σ}

AVS30 = -

AVS30_-σ:-σ相当のボーリング地点の AVS30 AVS30:推定したボーリング地点の AVS30 σ:ボーリング地点の微地形区分のσの値 上記各メッシュ毎に微地形区分から推定した

AVS30 とボーリング地点の AVS30_-σをもとに,以下 の式により平滑化を行った.

$$\Sigma$$
 ((1/(r_i + C)²) × AVS30_i × Kw_i)

$$\Sigma$$
 ((1 / (r_i + C)²) × Kw_i)

AVS30: 平滑化した当該メッシュのAVS30 R:式には出てこないが,当該メッシュの中心点 からの半径.この半径の円内にある当該メッシ ュと同じ微地形区分のボーリング地点が全て 平滑化計算の対象となる. R の値については, ボーリング地点の地質の影響範囲に相当する ものと解釈されるが,明確な根拠が無いため, 概ね隣接メッシュ程度までは影響を及ぼすと して, R = 100mと設定した.

- r_i:当該メッシュの中心点から,iボーリング地 点までの距離
- C:近隣のボーリング地点の影響を調整するため の定数.C が小さければ近隣の影響を強く受け ることになる.ここではCの値はRの0.1の大 きさすなわち10に設定した.

AVS30_i: 地点のボーリングの AVS30

Kw_i:微地形区分より設定される仮のボーリング 地点(各メッシュの中心点)の影響と実際 のボーリング地点の影響の重み付けを変え るための定数.i地点が仮のボーリング地 点であれば,Kw_i=1となり,実際のボー リング地点であればKw_iは1より大きな数 字を設定する.ここでは,半径Rの範囲で 対象となる仮のボーリング地点の数と同等 な値を実際のボーリング地点のKw_iの値と した.

2.5.4 メッシュ毎の表層地盤の増幅度の設定

地震による揺れ(S波:横ゆれ)は軟らかい地盤 ほど揺れが増幅するため、震源からの距離だけでは なく、深さ30mまでの地盤状況を勘案した地盤状況 を加味した地震の揺れやすさを推定した.実際には、 AVS30値が小さいほど地震動が増幅する関係にある.

表層地盤の増幅度は、AVS30 と最大速度の増幅度 の経験式(Midorikawa et al., 1994による 1987 年 千葉県東方沖地震の観測記録をもとに設定された 式)を用いられる式は以下のとおりである.

- Log G = 1.83 0.66 × Log AVS30 ± 0.16 AVS30:表層 30mの平均S波速度 (m/s)の推定値 ただし、100 m/s < AVS30 < 1500 m/s
 - G : S 波速度 600 m/s 基盤の最大速度に対する表 層地盤の最大速度の増幅度

2.6 想定地震別の震度予測

揺れやすさマップ作成では、作成する地域で被害 が発生しそうな地震についてそれぞれ揺れやすさマ ップを作成し、それぞれの地震による揺れやすさの 最大震度分布を作成し、その地域の揺れやすさマッ プを作成する.

高知市の揺れやすさマップ作成では、①活断層で 発生する M7.0以上地震、②海溝型地震「安政南海地 震」、③全国どこでも起こりうる直下型の地震の3種 類の地震について震度予測を行った.

揺れやすさマップ作成のために必要な震源の諸 元は、以下のとおりとした.地震動予測に必要なモ ーメントマグニチュード Mw が記載されていない場 合は、中央防災会議「首都直下地震対策専門調査会」 による気象庁マグニチュード M との経験式により推 定した.

2. 6. 1 活断層で発生する M7.0 以上の地震

マニュアルでは、「地方公共団体の直下あるいは その周辺で M7.0 以上の地震が発生するおそれのあ る活断層がある場合には、震源としてその活断層を モデル化する.」とあり、中央構造線断層帯(讃岐山 脈南縁~石鎚山脈北縁東部)(図-16)を活断層で発 生する想定地震として行った.

- 名称:中央構造線断層帯(讃岐山脈南縁~石鎚山 脈北縁東部)
- 位置:東経 133 度 16 分 北緯 33 度 54 分 から

東経 134 度 39 分 北緯 34 度 10 分

長さ:130 km

- 断層幅 : 20~30 km
- 上端深さ:4km
- 下端深さ:20 km (コンラッド面の震度分布より)
- 平均深さ:12 km
- マグニチュード M:8.0

モーメントマグニチュード Mw:7.6

図-16 想定される地震の発生位置図

2. 6. 2 海溝型地震

マニュアルでは「地方公共団体に影響の大きいM7 クラス以上の海溝型地震が存在する場合には、その 海溝型地震を震源としてモデル化する.」としており、 安政南海地震(図-16)をモデル化した.

名称:安政南海地震

位置:東経135度 北緯33度

アスペリティ北端:東経 132.93度 北緯 33.25度 から

東経 133.85 度 北緯 33.63 度

断層幅 :70~150 km 上端深さ:10 km 下端深さ:30 km 平均深さ:20 km マグニチュード M:8.4 モーメントマグニチュード Mw:7.9

2. 6. 3 全国どこでも起こりうる直下の地震

全国どこでも起こりうる直下の地震については, 中央防災会議「首都直下地震対策専門調査会」で, 震源としては全ての場所の直下(図-16)で M6.9 の地震を想定する.

名称:直下型地震 位置:各メッシュ直下

上端深さ:4km

下端深さ:20 km (コンラッド面の震度分布より)

平均深さ:12 km

断層最短距離: 4 km

マグニチュード M:6.9 モーメントマグニチュード Mw:6.6

2.7 揺れやすさマップ数値データファイルの作成2.7.1 工学的基盤での地震動予測

上記諸元をもとに、メッシュ毎の工学的基盤での 地震動として、工学的基盤での最大速度を以下の式 により予測した.

Log PGV₆₀₀ = 0.58 × Mw + 0.0038 × Dep - 1.29 + c - Log (X + 0.0028 × 10^{0.50Mw}) - k × X

PGV₆₀₀ :S 波速度 600m/s の工学的基盤上の最大速 度 (cm/s) Mw:モーメントマグニチュード Dep:断層の平均深度 (km) X:断層最短距離 (km) c:係数 (内陸地震:0.0,海溝型地震:-0.02) k:粘性減衰係数 (0.0027)

2.7.2 地表最大速度

基盤における地震動を各地震の設定により推定 し,表層地盤におけるS波速度の増幅度を考慮して, 表層における地表最大速度の推定を行った.

基盤上の最大 S 波速度 600m/s に、メッシュ毎に 設定した表層地盤の増幅度を以下の式を用い、メッ シュ毎の地表最大速度を推定した.

- $V = G \times PGV_{600}$
 - PGV₆₀₀ :S 波速度 600m/s の基盤上の最大速度 (cm/s)
 - G:S 波速度 600m/s 基盤の最大速度に対する表層地盤の速度の増幅度
 - V:地表最大速度(cm/s)

2.7.3 震度

地表最大速度が推定された後に、私たちが生活す る地表においてどの位の揺れが起こるかを推定する. 上記で推定したメッシュ毎の地表最大速度をも

- とに,以下の式によりメッシュ毎の震度を推定した.
- I = a + b × Log V I:計測震度 V:地表最大速度 (cm/s) a:係数 (2.30)
 - b:係数(2.01)

2.8 揺れやすさマップ出力図の作成

メッシュごとに各地震諸元に基づき推定した震 度により,揺れやすさマップを作成した.

活断層型の活断層は中央構造線断層帯のうち讃岐山脈南縁~石鎚山脈北縁東部(図-16)を使用した.この断層は、高知市からは北東部に位置し、東西に延びる断層である.

活断層による揺れやすさ(震度)の分布(図-17) は、谷底平野、自然堤防、デルタ、砂丘・砂州、埋 め立て・干拓、人工改変地などに震度6弱(黄色) が分布し、古生代・中生代・古第三紀及び丘陵地は 震度5強(緑色)が分布している.

南海地震型は、安政南海地震規模の地震が起きた 場合の震度(図-18)により揺れやすさマップを作 成している.揺れやすさは、谷底平野、自然堤防、 デルタ、砂丘・砂州、埋め立て・干拓、人工改変地 などに震度6強(橙色)が分布し、丘陵地は震度6 弱(黄色)となっている.古生代・中生代・古第三 紀及び丘陵地は震度5強(緑色)が分布している.

全国どこでも起こりうる直下型地震は、マグニチ ュード6クラスの地震がどこで起こるか分からない ため、今回は高知市の直下でマグニチュード6.9の 地震を想定(各メッシュの直下でそれぞれ発生した と仮定した)して地震動の推定を行った(図-19).

活断層型,海溝型,直下型の地震によるそれぞれ の地震動を重ね合せて,最大震度分布図を作成した (図-20).最大震度分布図は,直下型の震度(図-19)が大きいことから殆ど同じ震度分布図となった.

また,最大震度分布図(図-20)の震度のうち, 震度6弱及び6強が比較的家屋に及ぼす影響が多岐 にわたることから震度を細分化して表示した(図-21).赤で表示した震度7の地域は,図-12の微地 形区分図で埋立地・干拓地となっており,地震時の 揺れやすさが大きいことが分かる.また,沖積低地 の分布する地域では,(高知市の比較的人口が集中し ている市街地)などでは震度6強の震度分布が見ら れる.

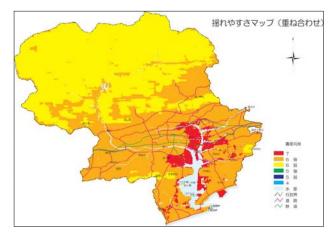


図-20 揺れやすさマップ(最大震度分布図)

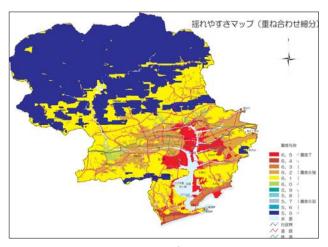


図-21 揺れやすさマップ(最大震度分布図)

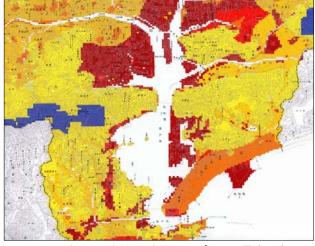


図-22 1/25,000 揺れやすさマップ(最大震度分布図) (約 20%に縮小)

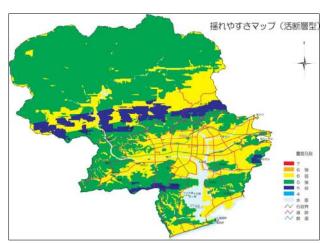


図-17 揺れやすさマップ(活断層型)

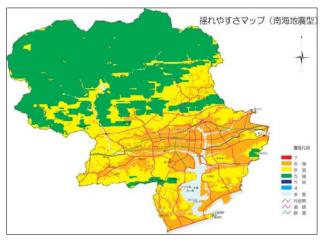


図-18 揺れやすさマップ(南海地震型)

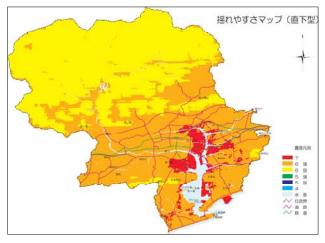


図-19 揺れやすさマップ(直下型)

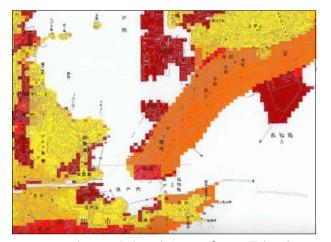


図-23 1/25,000 揺れやすさマップ(最大震度分布図) (約 40%に縮小)

図-22及び図-23は、1/25,000地形図上に50m メッシュごとの揺れやすさを表示したもので、市民 自身が居住位置を確認できる程度の地図で、地震に 備える場合の重要な資料として利用できる.

3. 地震防災マップ作成技術資料の課題の抽出及び 改善点

高知市域の揺れやすさマップの作成をとおして 地震防災マップ作成技術資料の内容について検討を 行い,以下のとりまとめを行った.

3.1 係数などについて

活断層の諸元の採用などの取り扱いには十分注 意を払う必要がある.採用するデータによって出力 される揺れやすさの値が大きく異なる場合がある.

また,計算式の係数などに幅がある場合にはどの 値を使用するか吟味する必要がある.今回行った高 知市の揺れやすさマップ作成では,マニュアル P55 (6)メッシュ毎の表層地盤の増幅度の設定の式が Log G = 1.83 - 0.66 × Log AVS30 ± 0.16 であ るが,今回行った高知市ではLog G = 1.83 - 0.66 × Log AVS30 ±0」で計算を行った.

3.2 土地分類基本調査の調査年による背景地形 図の図郭に生ずる不整合

大正7年9月, 文部省告示によって, それまで使 用されてきた, チットマン値に代えて大子午儀中心 の経緯度を使うよう決定したのを受け, 5万分1地 形図の図郭を 10.4"東へずらした.(修正する時期 にあわせて地形図毎に行われた).このため, 調整以 前の基図に隣接する調整以降の基図の間には 10.4"(約320m)の空白もしくはダブリが生ずる. このような不整合は他市町村で揺れやすさマップを 作成する際にも生ずる可能性があるため, 地形分類 図の空白部分の地形区分や表層地質図を入力する際, 隣接図郭を考慮しながら整合を図る必要がある.

高知市の揺れやすさマップ作成の際には、地形分 類図の「高知」の最小経度が 133°30'10.4"(図 -24)となっており、隣接図郭の「伊野」の最大経 度が 133°30'(図-25)であるため約1 cm(約 320 m)の空白部分が生じた.このため表層地質図を入 力する際、隣接図郭を考慮しながら整合を図った. しかし、他市町村で作成する際にも土地条件図がな い場合は、10.4"(約 320m)の空白部の地形区分 を行う必要が生ずるため地形区分を行う場合には、 今回行った調査で実施した(本報告では割愛した) 地形図等から詳細な微地形区分を行う手法の検討を 行ったので参考にしていただきたい.

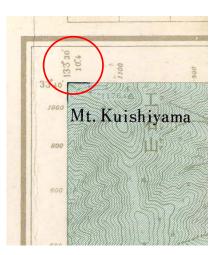


図-24 1/5 万 地形分類図「高知」(昭和 41 年 3 月発行)

図-25 1/5 万 地形分類図「井野」(昭和 59 年 3 月発行)

- 4. 市町が「揺れやすさマップ」を作成する場合の
 問題点等の調査
- 4.1 調査方法

4.1.1 調査を実施した市町の選定方法

「揺れやすさマップ」を作成する場合の問題点等 を把握する目的で,作成主体である市町に対してヒ アリングおよびアンケート調査を実施した. 調査を実施した市町は、以下のように選定した.

- (1) 現行のマニュアルに基づき「揺れやすさマッ
- プ」を作成した市町
- 1)鳴門市
- (2) 独自の手法で「揺れやすさマップ」を作成した 市町
 - 1) 橫浜市
- (3) 「揺れやすさマップ」を作成していない市町
 - 1) 北海道釧路市
 - 2) 宮城県仙台市
 - 3)静岡県静岡市
 - 4) 愛知県南知多町
 - 5) 三重県津市
 - 6) 大阪府大阪市
 - 7) 広島県呉市
 - 8) 広島県広島市
 - 9) 山口県周防大島町
 - 10) 愛媛県宇和島市
 - 11) 愛媛県愛南町
 - 12) 高知県高知市
 - 13) 高知県須崎市
 - 14) 大分県佐伯市
 - 15) 宮崎県日南市

4.1.2 調査内容

調査は、作成した市町、作成していない市町で内 容が異なるため分けて実施した. それぞれの市町で 調査した内容を以下に示す.

- (1) 「揺れやすさマップ」を作成した市町
 - 1)「地震防災マップ」作成の有用性
 - 2)「地震防災マップ」作成に際しての障害、課 題
 - 3) データの収集の可能性, 難易度
 - 4)精度、メッシュの大きさ
 - 5) 想定地震について
 - 6)「地震防災マップ」完成後の利用方法
 - 7) 住民への周知方法
- (2) 「揺れやすさマップ」を作成していない市町
 - 1)「地震防災マップ」の認知度
 - 2)「地震防災マップ」作成の必要性
 - 3)「地震防災マップ」作成の予定
 - 4)「地震防災マップ」作成に際しての障害
 - 5) データの収集の可能性, 難易度
 - 6) 精度, メッシュの大きさ
 - 7) 想定地震について
 - 8)「地震防災マップ」の利用方法
 - 9) 住民への周知方法

4. 1. 3 調査対象とした市町

調査対象とした市町、揺れやすさマップ作成の有

無, 担当部署などをまとめた結果を表(表-7)に 示す.表中には作成の有無についても示している. この結果,回収率は94%(17市町のうち16市町で 回答有り) であった.

表-7 調査先一覧表

番号	防災マッ プ作成の 有無	県	市町村	担当所属(部課係名)
1	有	徳島県	鳴門市	企画総務部 危機管理対策室
2	有	神奈川県	横浜市	総務局 危機管理対策室 情報技術課
3	無	北海道	釧路市	総務部 総務課 防災危機管理担当
4	無	宮城県	仙台市	消防局 防災安全部 計画係
5	無	静岡県	静岡市	消防防災局 防災部 防災指導課
6	無	愛知県	南知多町	総務課 消防交通係
7	無	大阪府	大阪市	危機管理室
8	無	広島県	呉市	総務部 安全対策課
9	無	山岡県	広島市	消防局 危機管理部 計画係
10	無	山口県	周防大島町	総務部 総務課 消防防災班
11	無	愛媛県	宇和島市	総務部 総務課 消防防災係
12	無	发版斥	愛南町	総務課 防災対策室
13	無	高知県	高知市	総務部 防災対策課 防災対策担当
14	無	同邓윢	須崎市	総務部 安全防災係
15	無	大分県	佐伯市	総務部 総務課 総務係
16	無	宮崎県	日南市	総務課 防災保安係

4.2 回収結果

4. 2. 1 認知度・必要性について

揺れやすさマップを作成していない市町に対し て, 地震防災マップの認知度, 「地震防災マップ作成 技術資料」の認知度の調査を行った(図-26).

1)「地震防災マップ」を知っているか?

①「地震防災マップ」の存在

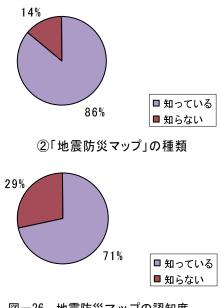


図-26 地震防災マップの認知度

2)「地震防災マップ作成技術資料」を知っているか?

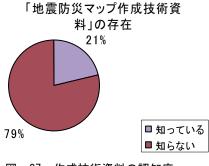
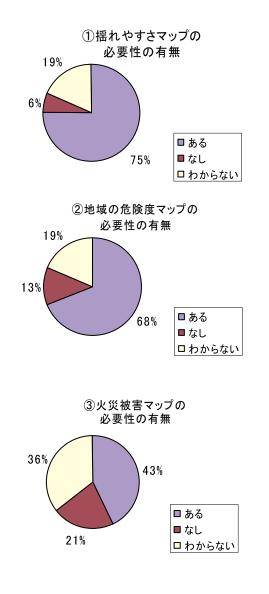
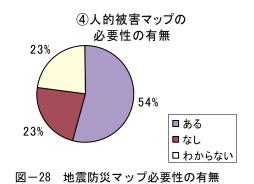




図-27 作成技術資料の認知度

この結果,大半の市町が地震防災マップの存在お よびその種類(ただし,一部知っているも含む)を 認識していることがわかった(図-26).また,具体 的な手法を示した「地震防災マップ作成技術資料」 の存在については認知度が低かった(図-27).今後 の普及が必要といえる.

また,全市町に対して,地震防災マップの必要性 について調査を行った(図-28).

この結果,地震防災マップのうち,揺れやすさマ ップ,地域の危険度マップについては,大半の市町 が必要性を感じていることが明らかとなった.

4. 2. 2 地震防災マップの作成について

揺れやすさマップを作成していない市町に対し て、地震防災マップ作成の予定があるかの調査を行 った(図-29).

この結果,地震防災マップ作成の予定があるのは 全体の14%程度と低く,必要性は感じているものの 作成するのは困難であるという結果になっているこ とがわかる.

「地震防災マップ」の作成予定

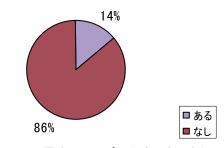


図-29 地震防災マップの作成予定の有無

それでは、その障害になっているものは何かについて調査を行った(図-30).調査した項目は、①予 算的問題か?②時間的問題か?③技術的問題か?④ 代替マップがあるからか?の4項目である.

調査の結果,大きな障害となっているのは,予算 であることがわかる.また,技術的問題も「ある」 と「わからない」の合計が7割である.

地震防災マップの必要性について,地方公共団体 内部や住民に対して理解を得るための担当部局の説 明力向上も地震防災マップ作成普及に向けた課題と なると考えられる.

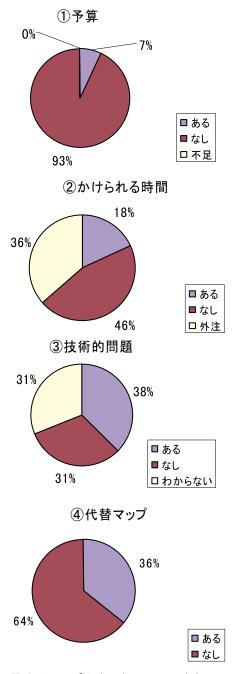


図-30 地震防災マップ作成にあたっての障害について

4. 2. 3 利用・周知について

調査結果より,地震防災マップの利用方法として 最も期待しているのが住民啓発およびソフト対策で あることがわかった.

また,周知する方法としては,インターネットで の掲示を考えている市町が多いものの,

- 1) 周知したことにより安全と判断した住民が逃げ ないのではないか?
- 2) 財産価値への影響があるのではないか? などの意見もあった.

- 4.3 調査結果の分析
- 4.3.1 問題点の抽出

調査によって判明した問題点を列挙する.

- 1)大半の市町では、地震防災マップの認知度は高 いものの、「地震防災マップ作成技術資料」の認 知度は低い.
- 2)大半の市町では地震防災マップの必要性を感じているが、マップの作成の予定がほとんどない、
 予算面での障害が大きいと考えられる。
- 3) 市町ごとに対応に温度差がある. これは防災全 般に係るものであろう.
- 4)市町の中でも地区ごとに温度差がある.この原因としては、行政の啓発不足、指導者の不足、過去の災害履歴などが影響しているものと推定される.
- 5)国や県に依存する傾向も見られる(特に財政的 な補助).住民だけでなく、地方行政の自助努力 ももう少し必要であろう.
- 6)予算が少ない中でも、住民を巻き込んだ実用的 な訓練などを熱心に行っている市町もある(例え ば、高知市の浦戸地区、横浜市の地域防災拠点運 営委員会など)
- 7)すべての市町で、予算的な問題が挙げられた. 防災・安全に関係する予算をどのように確保する か.また、住民に理解を得るか.特に首長の指導 力が重要と感じられた.
- 8)「揺れやすさマップ」だけでなく、土砂災害、浸 水、津波、高潮などの各種ハザードマップの必要 性が言われているが、市町レベルの部署では手が 回らない(人的問題).

4.3.2 今後の方策の提案

今回の調査によって、「揺れやすさマップ」に対 する市町村の認識、あるいは市町村が作成する場合 の課題・要望などが明らかとなった.今後、「揺れや すさマップ」の作成を推進するための、いくつかの 方策について以下に提案する.

(1) 住民への周知

今後, "減災"を進めていく上では, 住民による 自助, 共助が重要である. そのためには住民が自分 たちのリスクを正しく, 正確に認識・把握しておく ことが大前提である.「揺れやすさマップ」はそのた めの重要な資料であり, その必要性あるいは有用性 を PR して,住民からのボトムアップのような形で作 成の機運が高まることが望まれる.

したがって、マップの説明会は行政向けも必要で はあるが、住民への広報、周知が最も重要であり、 効果的である.防災に係る様々な団体及び行事を活 用して、説明会を開催する必要がある.住民の意識

79

が高まれば、本当に必要なものへの予算分配も理解 されやすく、作成への推進力となる.

(2) 作成しやすい環境の整備

最近では、どこの自治体も財政的に厳しく、マッ プの有用性は理解しても、作成に当たっては予算措 置ができない状況である.この問題に対する根本的 な解決は難しいが、少しでも作成しやすい環境を整 えるために、以下の2つの案を提示する.

1)国庫補助制度の活用,都道府県による補助制度 整備

地震防災マップの作成にあたっては,国土交通省 住宅局所管の住宅・建築物耐震改修等事業などの補 助制度が活用可能である.内閣府では,この旨各都 道府県防災部局に周知しているところであるが,十 分に理解されていないものと考えられる.都道府県 の建設部局と防災部局の連携を促すなど,当該補助 制度の積極的な活用を推進することが必要と考えら れる.

また,都道府県による独自の補助制度整備を促進 することも有効と考えられる.

2) マップ作成の適正化(効率化)

マップを作成する上では、メッシュ間隔やデータ 数によって経費は大きく異なる.例えば、必ずしも 全国一律に 50mメッシュで解析する必要は無いの ではないか.想定地震や家屋の密集度、耐震化率な どによる、適正化・効率化により、経費削減が図ら れるものと考えられる.ただし、このような適正化 により、実際の現象を把握できなくなる可能性もあ るため、具体的な作成指針を十分検討して、公開す る必要がある.

(3) 住民側に立った他のハザードマップとの連携

現在,各省庁から様々なハザードマップの作成が 提案されており,県・市町村で対応がなされている ところである.主なものでは,「液状化ハザーマップ」 「津波ハザードマップ」,「浸水ハザードマップ」,「土 砂災害ハザードマップ」などがある.しかし,住民 の立場においては,地震が発生したときに,自分の いる地域がどのような危険にさらされているのか, 例えば津波なのか,がけ崩れなのかを知るためには, いくつかのマップを参照しなければならない.あら かじめ準備をする際にも,地区を中心とした,「総合 防災マップ」ともいうべき集約的なマップの作成が 望まれる.

揺れやすさマップは、「総合防災マップ」の基礎 となるものと考えられる.このため、「総合防災マッ プ」の作成を推進することで効率化、経費削減を実 現しながら地震防災マップを作成できることが期待 され、関係部局で連携を強化しながら取り組む体制 作りも求められる.

5. あとがき

本報告は,平成 17 年度災害対策総合推進調整費 (内閣府)による地盤情報整備の可能性に係る調査 を内閣府と共同で実施した内容について報告を行っ た.

詳細な揺れやすさマップ作成には、地形分類デー タを使用するが、国土地理院では、地形区分を表示 した縮尺 1/25,000 の土地条件図、沿岸海域土地条件 図、治水地形分類図、活断層図等を作成しているの で利用して頂きたいと考えている.高知市の詳細な 揺れやすさマップの作成には、内閣府が作成した「地 震防災マップ作成技術資料」を使用したが、詳細な 設定についてはこの技術資料を参照して頂きたい. なお、地盤情報整備の可能性に係る調査では、技術 資料の内容についていくつかの検討を行い、微地形 分類手法について詳しく解説を行い、地形分類デー タのない地域でも簡易に地形の分類を地形図から行 うための検討を行ったが、本報告では、紙面の都合 で割愛させて頂いた.

地震防災マップの作成を企画,立案する場合には 本報の内容等について御議論頂けたら幸いである.

本地震防災マップ作成については,高知市総務部 防災対策課の山本聡氏をはじめ多くの皆さんに各種 資料の提供等お世話になりました.ここに記して感 謝申し上げます.

参考文献

国土地理院(1987):国土数值情報 流路(線).

国土地理院(1997):数値地図 50mメッシュ(標高).

国土地理院(2001): 数値地図 25000(行政界・海岸線)平成 12 年版.

- 国土地理院(2006):土地条件図「高知」「土佐高岡」.
- 国土地理院 (2006): 地盤情報整備の可能性に係る調査作業「高知地区」報告書, 国土地理院技術資料 D・1-No. 465. 高知地盤図編集委員会/高知県建築設計監理協会(1992): 高知地盤図.
- 高知県(2005):第2次高知県地震対策基礎調査報告書.

地震調査研究推進本部地震調査委員会強震動評価部会(2001):南海トラフの地震を想定した強震動評価手法について(中間報告).

地震調査研究推進本部地震調査委員会(2003):中央構造線断層帯(金剛山地東縁-伊予灘)の長期評価について.

- (社)全国国土調査協会(1966):土地分類基本調査 高知 5万分の1.
- (社)全国国土調査協会(1983):土地分類基本調査 伊野 5万分の1.
- (社)全国国土調査協会(1988):土地分類基本調査 本山・伊予三島・土佐長浜 5万分の1.
- 内閣府防災担当(2005a):地震防災マップ作成技術資料.
- 内閣府防災担当(2005b):地震被害に関する検討会(第6回)資料.
- 内閣府・国土交通省(2006):地盤情報整備の可能性に係る調査報告書.
- Midorikawa, S., M. Matsuoka, and K. Sakugawa (1994) : Site Effect of Strong-Motion Records Observed during the 1987-Chiba-ken-toho-oki, Japan Earthq. Sympo, Vol.3, 85-90.