# 航空機搭載型センサによる都市熱環境調査 Research on Urban Heat Environment with Airborne Sensors

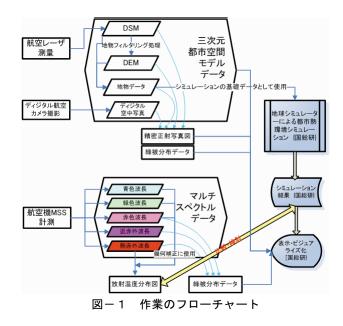
# 測図部 柴田光博・小井圡 今朝己・田中宏明 Topographic Department Mitsuhiro SHIBATA, Kesami KOIDO and Hiroaki TANAKA 国土交通省大臣官房 大木章一 Ministry of Land, Infrastructure and Transport Minister's Secretariat

Shoichi OKI

### 要 旨

ヒートアイランド対策の立案のための基礎資料と するために、JR 新宿駅を中心とした新宿地区及び八 王子市長沼公園を中心とした八王子地区について、 航空レーザスキャナ及びディジタル航空カメラによ るデータ取得を行い、DSM(Digital Surface Model) 及びディジタル空中写真画像を取得した.新宿地区 については精密正射写真図、三次元都市空間モデル 及び緑被分布図を作成した.

また,新宿地区及び汐留から品川を含む臨海地区 について航空機搭載型マルチスペクトルスキャナ (以下,「航空機 MSS」という.)によるデータ取得 を行い,放射温度分布図を作成した. さらに新宿地 区については温度分布の三次元表現を試み,臨海地 区については航空機 MSS データからの緑被分布図を 作成した.


#### 1. はじめに

ヒートアイランド現象は、気温上昇の要因となる 地表面被覆と人工排熱,地形・気象条件等が相互に 影響しあう等,そのメカニズムは複雑で未解明な部 分が多く,科学的知見が十分に得られていない。そ のため,有効な対策も十分に取られていないのが現 状である.

このような状況を踏まえ,国土交通省では総合技術開発プロジェクトとして平成 16 年度から3ヶ年 計画で共同研究を進めており,今後のヒートアイラ ンド対策が効果的に実施できるように,その科学的 裏付けとなる現象解明と対策の定量的評価手法等の 開発を行ってきている.

このプロジェクトの中で国土地理院の役割として、 都市の熱環境シミュレーションの基礎データとして 使用するための詳細な三次元都市空間モデルデータ を作成する必要があったため、航空レーザ測量とデ ィジタル航空カメラ撮影により取得したデータから 三次元都市空間モデルデータ及び緑被分布データを 作成した.そして、このデータを使用して、本総プ ロの共同研究者である独立行政法人建築研究所が世 界最高速レベルのコンピュータである地球シミュレ ータ(独立行政法人海洋研究開発機構所有)での都 市熱環境シミュレーションを行った.

また、この都市の熱環境シミュレーションの結果 との比較・検討を行うためのデータとして、航空機 MSS による都市部広域熱環境の実地計測を行い、温 度分布図及び緑被分布データを作成した(図-1).



### 2. 研究概要

## 2.1 データフュージョンによる都市空間モデル の作成

調査対象地区は、低・中・高層建物、複雑な形状 の建物及び公園緑地をバランスよく含む新宿地区 (図-2)及び高低差のある地形を含む八王子地区 (図-3)を選定し、航空レーザ測量とディジタル 航空カメラ撮影を行った.データ取得に使用した機 器を表-1に示す.



図-2 新宿地区計測範囲(25km<sup>2</sup>)

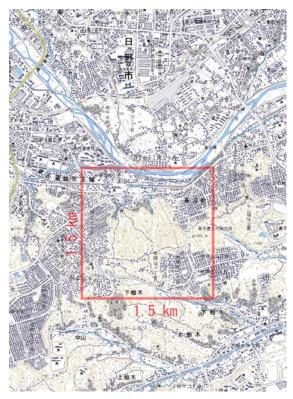
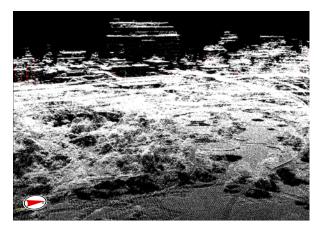



図-3 八王子地区計測範囲 (2.25km<sup>2</sup>)

表-1 使用した機器


|            | 機 種 及び 機 能                                                                                                                                                        |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 航空機        | 機 体 : Cessna208 (Caravan)<br>エンジン : P&WTC PT6A-114 (ターボプロップ)                                                                                                      |
| 航空レーザ測量    | <ul> <li>機種名 : RAMS システム(EnerQuest 社製)</li> <li>使用レーザ : 近赤外線(波長1.064µm)</li> <li>レーザ規格 : Class4 Laser Product</li> <li>モ:かがう : 4096 × 4096 カラーディジタルカメラ</li> </ul> |
| ディジタルカメラ撮影 | 機種名 : DMC システム(Intergraph 社製)<br>モニタカメラ : 13824 × 7680 カラーディジタルカメラ<br>観測波長帯 : RGB+1R (赤外)                                                                         |

### 2.1.1 航空レーザ測量

新宿地区の航空レーザ測量は高層ビル等の影響に よるデータ取得漏れ(以下,「オクルージョン」とい う.)を防ぐため,平成16年12月27日、南北方向 コース,平成17年1月7日、東西方向コースについ て重複計測を行った.八王子地区の航空レーザ測量 は平成17年1月9日に実施した.航空レーザ測量は 両地区とも,概ね50cm四方に1点程度の密度になる ようにデータ取得を行った.航空レーザ測量の詳し い計測条件を表-2に示す.

表-2 航空レーザ測量計測の計測条件

| 地区名        |                    |                    |
|------------|--------------------|--------------------|
|            | 新宿地区               | 八王子地区              |
| <b>A</b>   |                    |                    |
| 対地高度       | 7000.0ft (2133.6)m | 6500.0ft (1981.2)m |
| 海抜高度       | 7164.0ft (2183.6)m | 6959.3ft (2121.2)m |
| 対地速度       | 110kt              | 110kt              |
| コース数       | 43 本               | 8本                 |
| サイドラップ     | 52.30%             | 54.20%             |
| パルストレート    | 50000Hz            | 45000Hz            |
| スキャン角      | 14° (±7°)          | 16° (±8°)          |
| スキャン回数     | 47.0Hz             | 38.0Hz             |
| ビーム径       | 0.33 ミリラジアン        | 0.33 ミリラジアン        |
| パルスモード     | 1~4パルス             | 1~4パルス             |
| アロングトラック方向 |                    |                    |
| 平均計測密度     | 1.2m               | 1.5m               |
| クロストラック方向  |                    |                    |
| 平均計測密度     | 1.5m               | 1.5m               |
| コース間隔      | 250m               |                    |
| 取得幅        | 約 520m             |                    |
| 点群データ間隔    | 0.5m ×             | 0.5m に1点           |



図ー4 新宿地区のDSM

計測した航空レーザ測量データからノイズ除去を 行い,50cmメッシュのDSMを作成した(図-4:新 宿地区の DSM をプロットしたもので,東方向から新 宿御苑を通して JR 新宿駅方向を見た図).

### 2. 1. 2 ディジタル航空カメラ撮影

Intergraph 社製のディジタル航空カメラ DMC シ ステムを使用して,新宿地区は平成 16 年 11 月 27 日,八王子地区は平成 17 年 1 月 11 日に空中写真撮 影を行い,パンクロマチック,B,G,R,IR の画像デー タを取得した.なお,両地区ともオクルージョンを 防ぐために,オーバーラップ及びサイドラップが 80%になるように撮影を行った.

表-3にディジタル航空カメラ撮影条件を示す (図-5:ディジタル航空カメラで撮影した JR 新宿 駅東口周辺のパンシャープン画像).

表-3 ディジタル航空カメラ撮影条件

| 計測諸元    |                       |  |
|---------|-----------------------|--|
| 計 測 高 度 | 約 960m                |  |
| 飛 行 速 度 | 110kt                 |  |
| コース 間 隔 | 270m                  |  |
| 取得幅     | 1327m(撮影幅)×737m(進行方向) |  |
| 画素数     | 1億617万画素              |  |
| サイドラップ  | 80%                   |  |
| オーバーラップ | 80%                   |  |
| 地上解像度   | 約 9.6cm               |  |

図-5 新宿地区ディジタル航空カメラ画像

#### 2. 1. 3 地物モデルデータ作成

ノイズ除去を行って作成した 50cm メッシュの DSM に対して地物フィルタリング処理を行い,同じく 50cm メッシュの DEM(Digital Elevation Model)を 作成した.ノイズ除去処理及び地物フィルタリング 処理後には目視による点検を行い,必要に応じて手 作業による修正を加えた.こうして作成した DSM デ ータと DEM データの差分を取ることにより,50cm メ ッシュの地物モデルを抽出した(図-6).

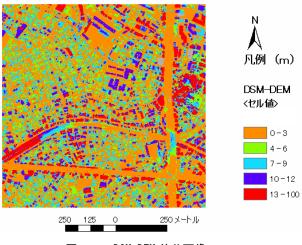



図-6 DSM-DEM 差分画像

### 2.1.4 精密正射写真図の作成

精密正射写真図を作成するにあたり,高さ7m未 満の地物に対しては、中心投影による像の倒れ込み がほとんど認められないので、これらに関しては別 途ディジタル図化機(Intergraph 社製 Imagestation) で作成する簡易オルソ画像で対応し、像の倒れ込み を正射投影に変換する作業は、高さ7m以上の地物 (3階建て以上の建物に相当)についてのみ行うこ ととした.

まず,作成した地物モデルに対して,高さ7m以 上の地物の自動抽出を行い,地物ポリゴンを作成した.

さらに細かいノイズや樹木等を除去するために, 85m<sup>2</sup>未満の小規模ポリゴンを除去する工程を加えた ものが図-7で,これに簡易オルソフォト画像を重 ね合わせたものが図-8である.

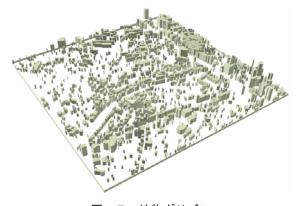



図-7 地物ポリゴン (高さを水平方向の2倍に強調)

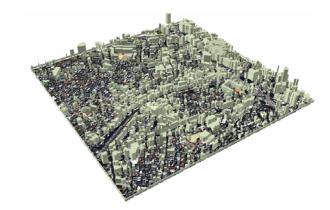



図-8 地物ポリゴンに簡易オルソ画像を重ね合わせた もの(高さを水平方向の2倍に強調)

次に地物ポリゴンから横断面の平面形状ポリゴン の自動抽出を行った.自動抽出結果には不必要な凹 凸が多数見られるため,必要な形状を残しつつデー タ量を低減させるための線分の平滑化処理を施して いる(図-9).緑色のポリゴン境界は DSM-DEM 差分 画像から抽出した境界線で,赤色の線はその境界線 に平滑化処理を施したものである.

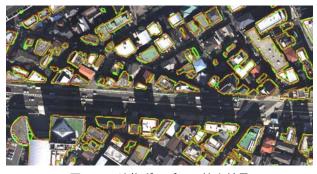



図-9 地物ポリゴンの抽出結果

こうして作成した DSM 及び建物平面形状ポリゴン, 簡易オルソ画像,ディジタル航空カメラ画像を使用 して,ディジタル図化機(Intergraph 社製 Imagestation)により精密正射写真図を作成した (図-10).