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  This study explores a method of creating tree height data and the root strength index data using archived 
LiDAR data, which include coarse and leafless season data, and improves the assessment of susceptibility of 
granitic mountain slopes to rainfall-induced landslides, considering vegetation in addition to topography. 
The study areas are located in mountain forests in central and western Japan. We found that the tree heights 
of broadleaf deciduous forest estimated using DCM (Digital Canopy Model) should be corrected by 
trigonometry, and the average values of the DCM tree heights in the 30-m grid could be verified even in 
broadleaf deciduous forests in comparison with the field data. We proposed a new factor “the root strength 
index,” which is the product of the tree height and the square root of the tree density. In the Hofu region, the 
root strength index estimated from the pre-event DCM is inversely proportional to the rate of 
rainfall-induced landslides occurred in July 2009. The use of the root strength index in addition to 
topographic attributes partially improves the correct prediction rate of rainfall-induced landslides in the Hofu 
region. Concave slopes, and strongly concave steep slopes in particular, show clear improvement in the 
correct prediction rate through the use of the root strength index. 
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1. INTRODUCTION 
 

The GSI (Geospatial Information Authority of 
Japan) archives contain wide ranges of LiDAR 
(Light Detection and Ranging) data measured by 
subordinate agencies of MLIT (Ministry of Land, 
Infrastructure, Transport and Tourism) as well as the 
GSI, which can be used for terrain surveys and 
disaster prevention. 

Shallow landslides were investigated in a 
previous study using two topographic attributes, the 
slope gradient and the convexo-concave index (the 
Laplacian) calculated from DEMs [Iwahashi et al., 
2012]. In that study, the authors found that the 
representative window sizes are approximately 30 m 
for rainfall-induced shallow landslides, and the 
optimal window size may be directly related to the 
average size of landslides in each region. The 
authors also found a stark contrast between rainfall- 
and earthquake-induced landslides. Rainfall-induced 
landslides are most commonly observed to occur at 

a slope gradient of 30°, and at a convexo-concave 
index of valley heads. The spatial distribution of 
shallow landslides in Tertiary sedimentary rocks and 
the influences of stratal architectures and artificial 
changes using the data of repeated landslide events 
and LiDAR DEM have also been investigated 
[Iwahashi and Yamagishi, 2010]. However, the 
effect of vegetation was not considered in those 
studies. 

It was revealed that tree roots improved the 
stability of hillslopes [Waldron, 1977; Abe and 
Ziemer, 1991]. The soil binding power of tree roots 
increases relative to the trunk diameter [Abe, 1997; 
Yamaba and Sano, 2008], and trunk diameter is 
proportional to tree height [Shimada, 2011]. Tree 
height indirectly suggests the soil binding power of 
the tree roots. If the soil binding power is considered 
in forests, the tree density must be useful 
information. We therefore address the tree height 
and tree density as the index of the soil binding 
power of tree roots. 



 

 

This study has two challenges, of which the first 
is data creation. In the field of forestry, many 
researchers [e.g., Clark et al., 2004; Itoh et al., 
2009] reported that DCMs (Digital Canopy Model: 
difference of DSM and DEM) correspond with the 
actual tree heights. However, those studies used 
very high resolution data of evergreen forests. MLIT 
has obtained wide ranges of LiDAR data, although 
densities of archived data are often coarse (about 1 
to 3 pt/m2 in the early 2000s), and the data were 
measured mainly in leafless season for conducting 
terrain surveys. Therefore, the tree heights from the 
archived LiDAR data should be compared with 
ground truth data, especially in the forests other than 
evergreen forests. The second challenge for this 
study is landslide assessment. It is well known that 
occurrence of rainfall-induced shallow landslides 
increase due to deforestation [e.g., Glade, 2003]. 
However, a quantitative relationship between the 
tree heights and the frequency of occurrence of 
rainfall-induced shallow landslides remains to be 
understood. In this study, we compared pre-event 
vegetation data with the landslide inventory map. 
This study sets a goal of developing a method for 
assessment of rainfall-induced shallow landslides 
using vegetation data in addition to topographic 
attributes. 
 
2. STUDY AREA AND TREE 

MEASUREMENTS IN THE FIELDS 

 
The data creation challenge is explored in five 

regions of Japan (Fig. 1). Table 1 describes the 
study areas. We set six to eight measurement fields 
per region, 33 fields in total, for conducting tree 
measurements. The size of measurement fields were 

20 m × 40 m (21 fields), 20 m × 50 m (nine fields), 
20 m × 20 m (two fields), and 20 m × 80 m (one 
field), which are close to the 30-m grid in area. 
Approximately 3,000 trees were measured in the 33 
fields. Locations of the measurement fields were 
traverse surveyed by a total station from identified 
RTK-GNSS points. Tree locations in the fields were 
determined by compass surveying. Tree heights 
were measured using ultrasound measurement 
instrument (Vertex IV, Haglof Inc.). Vertical 
measuring error using Vertex VI is defined within 
10 cm, though measuring results could have more 
errors by human-incident. Databases of tree height, 
tree species, trunk diameter, and tree numbers in the 
measurement field were created. The GIS data of 
trunk positions and canopy polygons were also 
created. The tree heights correlated well with trunk 
diameters. 
 

 
The landslide assessment was conducted in the 

Hofu region (47 km2 around Hofu City, Yamaguchi 
Prefecture, Japan; Romanized as “Houfu” in 
Iwahashi et al., 2012) where large numbers of 
shallow landslides occurred due to heavy rainfall in 
July 2009. The pre-event LiDAR data measured in 
2005 covers the damaged area widely. The lithology 
of the Hofu region is mostly comprised of Late 
Cretaceous granite. Intrusive or metamorphic rocks 
and alluvium are distributed more rarely [Matsuura 
et al., 2007]. The Hofu region lies on moderate 
mountains under altitudes of 500 m. The July 2009 
heavy rainfall event around the Hofu region was 

Table 1 Summary of the measurement fields. 
*BDF: Broadleaf Deciduous Forest, NEF: Needle leaf 
Evergreen Forest (mainly artificial), BEF: Broadleaf Evergreen 
Forest. Numbers are the number of fields. 
Region Month and 

year of tree 
measurement

Main 
species* 

Main lithology 
of bed rocks 

Hofu Sep. to Nov. 
2012 

BDF 2, 
NEF 2, 
BEF 2 

Cretaceous 
granite 

Izumozaki Oct. 2011 BDF 3, 
NEF 4, 
Mix 1 

Tertiary 
sedimentary 
rocks 

Niihama Sep. to Nov. 
2012 

BDF 2, 
NEF 2, 
Mix 1 

Cretaceous 
sedimentary 
rocks 

Shobara Sep. to Nov. 
2012 

BDF 3, 
NEF 4 

Cretaceous 
rhyolite 

Aso- 
Ichinomiya

Aug. 2013 BDF 1, 
NEF 6 

Quaternary 
volcanic rocks 
and pyroclastic 
deposits 

Fig. 1 Location of the study areas. Field data of trees were 
collected in the five regions shown. The landslide study is 
conducted in the Hofu region. 



 

 

characterized by torrential rains in the rainy season, 
with daily precipitation reaching 275 mm [Misumi, 
2010]. Over 1,000 landslides and subsequent debris 
flows occurred in deeply decomposed granite, and 
17 victims died including those affected by a 
landslide that occurred in an upstream slope of a 
nursing home [Misumi, 2010]. 
 
3. VEGETATION ATTRIBUTES 
 
3.1 LiDAR Data 

Table 2 shows the specifications of LiDAR data 
that were used in this study. We obtained DCM 
(Digital Canopy Model) from the difference in DSM 
(Digital Surface Model) and DEM (Digital 
Elevation Model). The DEMs used were 
outsourcing products. We generated DSMs from 
point clouds of original LiDAR data. DSM data 
were generated by taking maximum heights of point 
cloud for each rasterization grid. 
 
Table 2 Summary of the LiDAR data. 
* Density of point cloud is an average value in the tree 
measurement fields. 
Region Month and 

year of 
survey 

Density* 
(pt/m2) 

Condition of 
the leaves of 
deciduous tree 

Hofu Apr. 2005, 
Aug. 2009 

 1.2, 
11.2 

Mostly fallen, 
Leafy 

Izumozaki Nov. 2007  3.0 Half fallen 
Niihama Dec. 2008  1.8 Mostly fallen 
Shobara Mar. 2012 27.5 Totally fallen 
Aso- 
Ichinomiya 

Jan. 2013  8.5 Totally fallen 

 
3.2 Tree Height 
  It was often difficult to estimate individual tree 
height from LiDAR DCM, because the densities of 
point clouds of the archived data were frequently 
insufficient. In addition, several kinds of trees are 
tilting, and tree crowns overlap one another. The 
field data of tree height may thus include survey 
error for the location of tree crown and tree heights. 
We assumed that the uppermost canopy polygons in 
the GIS data include tree tops. The uppermost 
canopy polygons of large trees (trunk diameter ≥ 10 
cm) were extracted, and the field measured data of 
their tree heights were compared with DCM. Some 
of the LiDAR data had been measured for several 
years before the field measurement of tree heights 
was conducted (Tables 1, 2). DCM values had been 
corrected according to the estimated grown-up 
heights using forest tree growth curves that were 
published by local governments for forestry. We 
assumed a moderate site index and corrected older 

DCM data using the curves of prefectural or 
neighboring prefectural area. The curves of oak 
were used for broadleaf deciduous forests. 
Distributions of broadleaf deciduous forests had 
been estimated from the results of the National 
Surveys on the Natural Environment (Biodiversity 
Center of Japan; GIS data of actual vegetation: 
http://www.biodic.go.jp/trialSystem/top_en.html). 

 

 

 

 
  Fig. 2 compares the average DCM heights 
(corrected with grown-up values only) and the 

Fig. 2 Average tree height for each measurement field. 
One meter DCMs were corrected using only grown-up 
values. 

Fig. 3 Average tree height for each measurement field. 
One meter DCMs were corrected with grown-up values, and 
the broadleaf deciduous tree areas were corrected using a 
trigonometric function. 



 

 

average field measured tree heights in the 
measurement fields. In the case of broadleaf 
deciduous forests, the average DCM heights were 
overestimated due to tilting of trees. Evergreen trees 
tend to grow vertically, and broadleaf deciduous 
trees tend to grow perpendicular to slopes.  
  Therefore, we used the cosine of DCM height as 
the estimated tree heights of broadleaf deciduous 
forests and mixed forests. Fig. 3 shows the corrected 
values. 
  Fig. 3 shows the corrected average values for 
each measurement field. However, scatter grams of 
individual trees often show poor correlation, 
especially in the case of broadleaf deciduous forests.  
 

 

 
  Fig. 4 shows scatter grams of individual tree 
heights of broadleaf deciduous forests in the 
Izumozaki region. Red crosses indicate the averages 
that correspond to the dots in Fig. 3. Fig. 4 indicates 
that averages in the 30-m grid, which is nearly 
similar in area to measurement fields, can present 
good results even in broadleaf deciduous forests, 
where DCM values show almost no correlation with 
the field-measured individual tree heights. 
  Point cloud density of LiDAR data may have 
effects on the correlations of individual tree height 
with correspondent DCM height. In the Hofu 
region, the 1-m DCM created from the 2009 LiDAR 
data (11.2 pt/m2) shows good correlation (R2 = 0.84) 
with the all field measured tree height of large trees 
(trunk diameter ≥ 10 cm). The correlation obtained 
using the 2005 LiDAR data (1.2 pt/m2) is lower. In 

addition, extremely fine resolution of point cloud 
density caused lower correlation (R2 = 0.76 for 1-m 
DCM) than coarser but suitable resolution (R2 = 
0.79 for 2-m DCM). However, average tree heights 
of the 2005 DCM in measurement fields are not 
inferior in comparison with the 2009 DCM. 
3.3 Tree Density 
  We calculated the tree density using the image 
processing method of Okatani et al. (2013). The 
method extracts cells that have the maximum DCM 
values within 3 × 3 cells, i.e., those cells that are 
estimated to be tree tops (Fig. 5) using the 
maximum filter. We defined the tree density as the 
numbers of the tops of tall (corrected DCM ≥ 5 m) 
trees, excluding shrubs, in the 30-m grid. This 
method can be applied to a wide range of 
conditions, including deciduous forests in winter, 
although the number of peaks may be influenced by 
DCM resolution. 

 

 
  Fig. 6 compares the tree densities estimated from 
1-m DCM and measured data in the fields. Over the 
resolution limit, the estimated tree densities of 
needleleaf evergreen forests reach the maximum. 
However, the two data for leafy forests under the 
resolution limit show correlations. In addition, 
underestimated needleleaf evergreen forests, which 
are dense artificial cedar forests, include many thin 
trees or young trees according to the tree 
measurements. Therefore, very high tree densities 
do not indicate sufficient soil binding power of tree 
roots. We consider that the estimated tree density 
from DCM peaks could be supplementarily used for 
landslide assessment. 
 

Fig. 4 Individual tree height for broadleaf deciduous forests 
in the Izumozaki region (green dots). 
TF: Tree height of field data, TD: Tree height estimated 
from corrected 1-m DCM. 

Fig. 5 An example of extracted peaks (black dots) using 3 × 
3 maximum filter from 1-m DCM of a Japanese cedar forest 
in the Shobara region. 



 

 

 

 
3.4 The Root Strength Index 
  The soil binding power of tree roots is 
proportional to the value of the trunk diameter 
divided by the distance between the trees 
[Tochimoto et al., 2010]. The trunk diameter is 
proportional to tree heights. The square of tree 
distance is inversely proportional to the tree density. 
Therefore, we defined the root strength index using 
LiDAR data as the product of the estimated tree 
height and the square root of estimated tree density, 
as Eq.(1). 

ܴܵܶ ൌ ܪ ൈ  (1)            ܦ√
where RST: the root strength index, H: estimated 
tree height, D: estimated tree density. 
  The tree density may include some uncertainness 
about contribution to the soil binding power. 
Planting tree too thick can result in poor growth of 
tree roots, especially in artificial forests. However, 
the threshold of root growth in relation to tree 
density is not clear. In this study, that issue is not 
taken into account in Eq.(1). 
 
4. LANDSLIDE SUSCEPTIBILITY AND 
VEGETATION 
 
  In this chapter, the authors introduce the results of 
landslide susceptibility analyses conducted using 
tree height and root strength index extracted from 
the pre-event (2005) LiDAR data of the Hofu 
region. The landslide inventory data were derived 
from 20 to 60 cm orthoimageries obtained in August 
2009. 
 
4.1 Correlation between Landslide Susceptibility 
and Tree Height or Root Strength Index 
  We compared the estimated tree height from 
pre-event DCM and the rate of shallow landslides 
that occurred in July 2009 heavy rainfalls with the 
eliminating influence of topography (Fig. 7). The 
horizontal axis corresponds to the topographic 
vulnerability of the Hofu region [Iwahashi et al., 

2012] calculated from slope gradient and the 
Laplacian. The topographic vulnerability caused due 
to the frequencies of landslide cells versus slope 
gradient or the Laplacian derived from the LOG 
filter (Laplacian of Gaussian; Marr and Hildreth, 
1980), and their contribution, respectively. The two 
terrain attributes were calculated from the pre-event 
2-m DEM in 15 × 15 cells (30-m window size). 
Then the topographic vulnerability data derived 
from the 2005 LiDAR DEM and the 2009 landslide 
inventory data were summarized in the 30-m grid. 
In Fig. 7, the depth axis corresponds to the tree 
height calculated from the 2005 LiDAR DCM and 
averaged in the 30-m grid. The Percentage of the 
2009 landslide in Fig. 7 shows the percentage of 
30-m blocks which include one or more 2-m 
landslide cell. Fig. 7 reveals that higher average tree 
heights tend to cause a lower rate of landslides even 
if the topographical vulnerability remains constant. 
 

  

  Fig. 8 shows the root strength index calculated 
from the pre-event (2005) 2-m DCM in the 
horizontal axis and the rate of landslides in July 

Fig. 6 The tree densities estimated from 1-m DCM and 
measured data in the fields. 

Fig. 7 Percentage of the 2009 landslides in the Hofu region, 
the topographic vulnerability, and the tree height derived 
from the 2005 LiDAR DCM. The data were summarized in 
30-m grid, and the data sections less than 100 cells were 
omitted. 

Fig. 8 Percentage of the landslides that occurred during the 
2009 heavy rainfall in the Hofu region, in comparison with 
the root strength index calculated from 2005 LiDAR DCM. 



 

 

2009 in the vertical axis, respectively. The figure 
reveals a clear correlation between the increase of 
the root strength index and the decrease of the rate 
of landslides. 
 
4.2 Contribution of the Root Strength Index to 
Landslide Prediction 
  We estimated the contribution of the root strength 
index to landslide susceptibility in the Hofu region. 
The primary factor dataset was created from the 
pre-event 2-m LiDAR data. The primary factor 
dataset includes landslide occurrence as a 
categorical valuable; moreover, the slope gradient, 
the convexo-concave index (the Laplacian) 
described in section 4.1, and the root strength index 
were derived from DCM as continuous variables. 
  At first, we examined overall correct prediction 
rate using SVM (Support Vector Machine; Cortes 
and Vapnik, 1995). In this analysis, we used a 30-m 
grid summarized dataset considering the 
data-handling capacity. SVM is a supervised 
learning model that is highly applicable to 
non-linear data such as the rate of landslide, which 
is often non-linear to primary factors. SVM is an 
excellent classifier for two categories. We used the 
ksvm command of the kelnlab library [Karatzoglou 
et al., 2013], which works in free-software R [R 
Core Team, 2013]. The 30-m grid landslide 
inventory data of the July 2009 heavy rainfall was 
coupled with the primary factor data, and 
non-failure cells were extracted into the same 
number of the failure cells using a random sampling 
technique. Then, the dataset was divided into two 
groups using a random sampling procedure. One 
group was used as training data and the other was 
used as prediction data. Consequently, overall 
correct prediction rate was determined to be 73.7% 
using the two topographic attributes (slope gradient 
and convexo-concave index), and 74.4% using the 
three primary factors, including the root strength 
index as well as the topographic attributes. 
Consequently, the total increase in correct prediction 
rate is very small even in the Hofu region where the 
correlation between landslide and vegetation is very 
clear (Figs. 7, 8). This indicates that the prediction 
rate is partially raised by using the root strength 
index. 
  Therefore, we then used original 2-m datasets and 
analyzed them after dividing the datasets into 
groups according to types of topography. In the case 
of rainfall-induced landslides such as the 2009 
landslides in the Hofu region, the rate of shallow 
landslide is the highest around 30 degrees for slope 
gradient, and the value around valley head for the 
convexo-concave index [Iwahashi et al., 2012]. In 

addition, the convexo-concave index divides the 
convex and concave slopes at the zero value. We 
used the obtained threshold values to divide slopes 
into groups. Then, groups that include more than 
1,000 failure cells were analyzed. A thousand each 
of failure and non-failure cells were extracted. We 
examined two methods, the SVM and a popular 
method, the linear discriminant analysis (LDA). In 
the SVM analysis, one group was used as training 
data and the other was used as prediction data. In the 
LDA, we compared the two classification results 
simply. The results are described in Table 3. 
Strongly concave slopes, steep strongly concave 
slopes in particular, show clear improvement in the 
correct prediction rate or the correct answer rate. 
 
Table 3 The correct prediction rate of the 2009 landslides by 
SVM and the correct answer rate by LDA for each slope type. 
SG: Slope gradient (degrees), SVM: Support Vector Machine, 
LDA: Linear Discriminant Analysis. 

SVM 5 ≤ SG < 30 30 ≤ SG < 47 
Strongly concave 
(Valley bottom to 
valley head) 

56.9%⇒60.9% 
(+4%) 

55.5%⇒63.9% 
(+8.4%) 

Weakly concave 
(Valley head to 
ridge) 

65.2% ⇒ 66.2% 
(+1%) 

57.1%⇒57.9% 
(+0.8%) 

Convex slope 74.3%⇒74.8% 
(+0.5%) 

66.9%⇒65.3% 
(-1.6%) 

LDA 5 ≤ SG < 30 30 ≤ SG < 47 
Strongly concave 
(Valley bottom to 
valley head) 

59.3%⇒61.8% 
(+2.5%) 

51.5%⇒63.3% 
(+11.8%) 

Weakly concave 
(Valley head to 
ridge) 

65.8%⇒67.1% 
(+1.3%) 

59.4%⇒61.9% 
(+2.5%) 

Convex slope 73.9%⇒74.3% 
(+0.4%) 

66.2%⇒67.3% 
(+1.1%) 

 
5. DISCUSSION 
 
  There are two factors that may have a correlation 
with the soil binding power of tree roots other than 
trunk diameter. 
  The soil binding power of tree roots may differ 
with tree species. According to research in Japan, 
oaks have stronger roots [Tochimoto et al., 2010]. 
However, deciduous trees in Japanese mountains, 
which are populated with a large variety of species 
including oaks, do not always express stronger tree 
roots than needleleaf evergreen trees, which are 
mostly Japanese cedar or cypress plantations 
[Kurokawa, 2012]. The root strength index of the 
Hofu region does not consider tree species, although 
Fig. 7 expresses a clear correlation. Difference of 



 

 

the soil binding power in tree species should be 
offset by including diverse species in study area. 
Therefore, we consider that the root strength index 
calculated from LiDAR data is a new suitable index 
for landslide susceptibility assessment in regions 
where the influence of tree roots can be found. 
  The second factor is surface soil in relation to tree 
roots. Although occurrence frequencies of landslides 
in intrusive or metamorphic rock slopes are rare, 
granitic slopes in the Hofu region experienced large 
number and density of landslides in July 2009. This 
indicates differences in topsoils between deeply 
decomposed granite slopes and hard rock slopes. 
Such slopes may differ in tree root growth in 
bedrocks. This diversity of topsoils may be observed 
in the slopes of the same legend of the geological 
map. However, the method for determining the 
thickness of topsoil over a wide area, which is a key 
factor in shallow landslides, is currently not 
available. Under these circumstances, the root 
strength index derived from DCM is expected to 
improve landslide susceptibility assessment in 
concave steep slopes, which are understood to have 
high topsoil thickness. Landslides in strongly 
concave slopes were difficult to predict using the 
topographic attributes only; however, the use of the 
root strength index improved the rates (Table 3). 
  A practical effect of using the root strength index 
is in extracting a basin with high priority of 
landslide assessment. The black polygons in Fig. 9 
represent the July 2009 landslides and their extents 
in a part of the Hofu region. The pink cells of Fig. 
9-a represent the granitic slopes of 15 to 45 degrees 
in middle valley to ridge, which are highly 
susceptible to rainfall-induced landslides in general 
and also in the Hofu region [Iwahashi et al., 2012], 
from pre-event LiDAR DEM and the geological 
map [Matsuura et al., 2007]. Fig. 9-a indicates that 
topographic attributes extract a large number of 
object areas. Fig. 9-b adds the root strength index to 
the object areas of Fig. 9-a in color gradation. 
Although it is confined to a certain region where the 
influence of tree roots can be found, and to small 
shallow landslides that are not affected by stratal 
architectures of bed-rocks, there is an obvious 
advantage in adding the root strength index to 
landslide assessment. Enhanced practical 
assessment of shallow landslides can be made 
possible by emphasizing use of the root strength 
index for more susceptible basins. 
  The expected ripple effects from this study 
include not only enhancement of the assessment of 
shallow landslides but also forest management and 
biomass assessment [Drake et al., 2002] by 
addressing the challenge of creating tree height data 

from the archived LiDAR data. Even if the influence 
of tree roots on landslides is minimal in this region, 
tree heights data are useful, for example, in order to 
obtain a rough estimate of the volume of trees 
displaced due to floods.  

 

 
  The remaining issue with this method is the 
creation of tree density data. However, the densities 
of archived LiDAR point cloud data continue to 
increase. The problem caused by the low density of 
point cloud could be resolved with time. 
 
6. CONCLUSIONS 
 
  We have designed a method for calculating tree 
height, tree density, and the root strength index from 
the archived LiDAR data, which include coarse and 
leafless data in addition to field-surveyed data from 
five regions in Japan. We confirmed that the tree 
height and the root strength index had negative 
correlation to the rate of rainfall-induced landslides 
from a case study in the Hofu region that is 
characterized by granite mountains. 
  We compared the correct prediction rates when 
using only the two topographic attributes (slope 

Fig. 9 The granitic slopes of 15 to 45 degrees in middle 
valley to ridge in a part of the Hofu area (a), and the root 
strength index added to the object areas (b), in comparison 
with the 2009 landslide and basins calculated from DEM.  



 

 

gradient and convexo-concave index) and in another 
case, using the three primary factors, which include 
the root strength index besides the topographic 
attributes. Total increase in the correct prediction 
rate considering the three primary factors was very 
small even in the Hofu region where the correlation 
between landslide occurrence and vegetation is very 
clear. However, concave slopes, strongly concave 
steep slopes in particular, show clear improvement 
in the correct prediction rate using the root strength 
index. Therefore in the case study, addition of the 
root strength index improved the prediction of 
shallow landslides. 
  This study may improve the assessment of 
shallow landslide, forest management, and biomass 
assessment. 
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