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  Abstract
 

Although the set of Gauss-Krüger projection formulae recognized and used worldwide thus far is “the 2nd 
formulae”, which is limited to use within certain longitudinal zones, the recently discovered usefulness of “the 1st 
formulae”, which can be applied to extensive areas on the globe, has been understood from a new perspective. The 
formulae are favorable in view of the modern computer environment, in which they are of importance for recognizing 
details comprehensively, not only in the discipline of survey and mapping but also in geospatial information 
management. In this paper, I try to elaborate a comprehensive derivation of these formulae, including those for meridian 
convergence and scale factor, so that anyone interested in geospatial information management can understand them 
with minimum background knowledge.

1. Introduction
In 1912, just one century ago, Johannes Heinrich 

Louis Krüger published “Konforme Abbildung des 
Erdellipsoids in der Ebene” (Conformal Mapping of the 
Earth Ellipsoid to the Plane; Krüger, 1912). In this article, 
two kinds of formulae to describe coordinate conversion 
appeared. The set of formulae that appeared in the first 
part of the article (which we will hereafter call “the 1st 
formulae”) is applicable to conversion for extensive 
areas on the globe. In contrast, the set of formulae that 
appeared in the second part of the article (which we will 
hereafter call “the 2nd formulae”) is restricted to usage 
within certain longitudinal zones. Notwithstanding their 
capacity for general usage, the 1st formulae appear to 
have been less useful than the 2nd formulae, owing to 
the intricacies of the whole formulaic system as well as 
the roundabout derivation process described in Krüger’s 
original article.

Under these circumstances, Karney (Karney, 
2011) opened our eyes to the fact that the 1st formulae 
are in harmony with the present computing environment. 
Based on this fact, some commentaries (e.g., Deakin et 
al., 2011) have been reported. Deakin et al. explain these 
formulae both via Gauss-Lambert and Gauss-Schreiber 
projections. Although these commentaries help us to 
grasp the concepts underlying the 1st formulae, there is 
room for improvement in terms of reducing the amount 

of indispensable background knowledge needed for 
comprehension.

In this short report, a comprehensive derivation 
process for the extensive coordination conversion 
formulae in the Gauss-Krüger projection is explicated 
using nothing but a basic concept of elementary complex 
analysis as background knowledge. In this paper, I first 
show consecutive step action flow to describe how to 
perform the necessary steps in order to achieve the 
desired conversion (section 2). Next, in section 3, I 
present all the formulae, including those for meridian 
convergence  and scale factor m. In section 4, I give 
a step by step explanation of their derivation; finally, I 
conclude this report in section 5.

2. Displaying step action flow for conversion
The consecut ive s tep act ion f low of  the 

extensively applicable coordinate conversion in the 
Gauss-Krüger projection is presented as follows:

1.	 Regard the earth as an oblate ellipsoid with 
semi-major axis a and the 3rd flattening n. (As 
a rule, the earth ellipsoid is identified by two 
parameters—the semi-major axis and the inverse 
1st flattening F, hereafter however, we use 
n=1/(2F–1) instead of F.) 
Assign geographic latitude  and longitude  as 
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geographic coordinates on the surface of the earth 
ellipsoid.

2.	 Transform geographic coordinates to Cartesian 
coordinates by “normal” Mercator projection. At 
this point, introduce isometric latitude , which is 
defined as

    (1)

Here, gd–1x denotes the inverse function of the 
Gudermannian function gd x, which is defined as

        (2)

3.	 Assign a desired meridian, with longitude 0, as 
a central meridian and set . Regard the 
acquired Mercator projection plane as a complex 
plane ϑ  in which the central meridian is set up as 
the real axis, and the equator, as the imaginary 
axis; i.e., ϑ= +i , where i= −1 denotes the 
imaginary unit.

4.	 Perform a conformal mapping from the ϑ-plane 
into a complex plane ' = ' + i ' using the 
Gudermannian function, which, as a matter of 
course, can be regarded as a holomorphic function 
(complex regular function) on the domain under 
discussion; i.e.,

               (3)

This mapping is performed in order to normalize 
the range of the variable of isometric latitude  
( ) to that of conformal latitude 
(−π /2≤ ≤π /2 )  on the real axis of the '-plane 
in order to enable the dual-form transformations 
performed in the next step, i.e.,

    (4)

5.	 Perform a conformal mapping from the ' 
-plane into a complex plane = + i  using a 

holomorphic function of the form

               (5)

and inverse form,

                (6)

At this point, determine the values of the Fourier 
sine coefficients { k} that appear in formula (5) 
so that the value of argument  on the real axis of 
the ' -plane coincides with rectifying latitude , 
defined as scaled latitude by meridian arc length, 
i.e.,

                (7)

6.	 Finally, multiply both coordinates  and  by 
the product of central meridian scale factor m0 

and rectifying radius A in order to obtain plane 
rectangular coordinates easting X and northing Y, 
which coincide with an appropriate scale of the 
real world.
The rectifying radius is defined as the corresponding 
radius of the circle whose perimeter coincides 
with the entire meridian arc length of the earth 
ellipsoid.

We note that with regard to the details of the 
determination of the Fourier sine coefficients { k} and 

{ k} that appear in step 5, as well as the Fourier sine 
coefficients { k} that appear in the first part of formula 
(13), presented in section 3, a comprehensive summary 
has already been given by Kawase (Kawase, 2011).

3. 	Displaying all the extensive coordinate conversion 
formulae in the Gauss-Krüger projection

On the basis of the step action flow shown in the 
previous section, we write all the forward and inverse 
coordinate conversion formulae in the Gauss-Krüger 
projection. Note that the roles of coordinates X and Y 
in the Japanese surveying and mapping community 
is contrary to that displayed below, i.e., in Japan, X 
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traditionally denotes northing while Y denotes easting.

( , 0, = − 0: given)

                       (8)
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( 0, X, Y: given)
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4. Explanation of the derivation of each formula
4.1 Derivation of the main conversion

In this section, we confirm the formulae displayed 
in the previous section one by one. First of all, we define 
real variables , , and ', ' as

(19)

From formulae (5), (6), and (19), along with the 
properties of complex trigonometric functions in terms 
of the real and imaginary parts of their arguments (e.g., 
Abramowitz et al., 1964) as well as the procedure for 
step 6 in section 2, it is not hard to derive formulae (8), 
(12), (15), (16), and (17).

As for formula (10)*, we can easily derive it from 
formulae (1) and (4) directly.

4.2	 Derivation of the relation between variables ( ) 
and ( ' ) 

Next, we confirm the relation between variables 
( ) and ( ', ' ). Note that the results that we shall 
now show below may also be derived from other 
citations (e.g., Weisstein, 2008).

We start from the relation

(20)

which is derived from formulae (3) and (4) and yields

(21)

By operating the hyperbolic tangent on both sides of 
formula (21), we get

(22)

Then, applying the property of complex sine 
functions in terms of the real and imaginary parts of 
their arguments to the left hand side of formula (22) and 
addition formulae for complex hyperbolic functions to 
the right hand side of formula (22), we obtain

(23)

Regarding the equivalence of the real and 
imaginary parts of both sides of formula (23) as 
simultaneous equations, and bearing  in mind†, 
we can obtain the appropriate solutions with respect to  
sin  and tan  as

              
(24)

from which we derive the second part of formula (13) 
and formula (18). Using the results of formula (24), we 
can also obtain other expressions of relation as

                   (25)

                 (26)

 

               (27)

               (28)

which yield formula (11) when formulae (26) and (27) 
for ' and formulae (25) and (28) for ', are combined.

4.3 Derivation of meridian convergence
With regard to meridian convergence, we start 

from its definition. Bearing the well-known characteristic 
of derivation of holomorphic function in mind, we can 
see that
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* An improved expression is presented by Karney (Karney, 2011).
† By this restriction, the other apparent set of solutions sin = cosh '/sin ', tan  = cos '/sinh ' is discarded.
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(29)

Here, we have referenced two facts. The first is that the 

composite function of holomorphic functions must also 
be a holomorphic function, and the other is that Cauchy-
Riemann equations must be satisfied with respect to 
arbitrary holomorphic functions.

With respect to the complex derivative that 
appeared in the fraction of the final result for formula 
(29), it follows from formulae (2), (3), and (19) that we 
can calculate it explicitly as

In this case, the essential part which formula (30) implies 
is merely the numerator in the second fraction of the 
final result since all we have to do is to take the ratio of 
the imaginary part to the real part of the result of formula 
(30) in accordance with the final result of formula (29).

Bearing the above and formula (4) in mind, it is 
not hard to see that

 (31)

and hence

      (32)

which corresponds to the first result of formula (9). We 
can also obtain the first part of formula (14) from the 
above result along with formulae (19) and (24).

4.4 Derivation of scale factor
With regard to scale factor, we also start from its 

definition as

             (33)

Here, Nϕ denotes the radius of curvature in the prime 
vertical for the earth ellipsoid, which is a function of . 
Bearing in mind the following relations as well as 
formula (4) and the interim results of formula (30), it is 
not hard to see that which yields the last part of formula 
(9). We can also obtain the last part of formula (14) from 
the above result and formulae (19), (26), and (27).

    (34)

(35)

Thus, we finally achieve overall comprehension 
of the extensive coordination conversion formulae in the 
Gauss-Krüger projection.
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5. Concluding remarks
A prospective explanation for the comprehensive 

derivation process of the extensive coordination conversion 
formulae, including those for meridian convergence and 
scale factor in the Gauss-Krüger projection has been 
presented.

It is hoped that this report will help to foster a better 
understanding of these useful formulae for all those who are 
concerned with geospatial information management.
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