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Abstract 
 

Knowing the geoid over Japan is essential for many geodetical and geophysical applications. Because of the tectonic 
settings of the area, significant geoid undulations occur in a wide range of spatial scales and make the determination of the 
geoid a complex task. In some applications, high absolute accuracy at long and medium wavelengths is required for geoid 
models with high resolution, which can be achieved by a proper combination of satellite gravity information with 
densely-distributed surface gravity data after careful consideration of their respective error characteristics. Here we show how 
to realize such a combination in a flexible way using spherical wavelets. The gravity potential is expressed as a linear 
combination of wavelets, whose coefficients are obtained by a least squares adjustment of the datasets. The combination needs 
to handle a large system of equations and we apply a domain decomposition method. First, we define sub-domains as subsets 
of wavelets. Based on the localization properties of the wavelets in space and frequency, we define hierarchical sub-domains of 
wavelets at different scales. On each scale, blocks of sub-domains are defined by using a tailored spatial splitting of the area. 
Second, we approximate the normal matrix for each block by introducing local approximation of the wavelets depending on the 
scale, in which local averages of the data are actually used for computation. Finally, we solve the system iteratively. In the 
beginning we validate the method with synthetic data, considering two kinds of noise: white noise and colored noise. We then 
apply the method to data over Japan: a satellite-based geopotential model, EIGEN-GL04S, and a local gravity model from a 
combination of land and marine gravity data and an altimetry-derived marine gravity model. A hybrid spherical 
harmonics/wavelet model of the geoid is obtained at about 15 km resolution and the residuals indicate the existence of possible 
biases in the surface model. This information is used to correct the local model and the method is repeated  with the corrected 
data, resulting in an improved hybrid model of the gravity field over Japan.  
 
1. Introduction 

Knowing the geoid over Japan in detail is essential 
for many applications. First, conversion between 
GPS-derived and leveled heights becomes possible with 
knowledge of the geoid. It allows us to monitor crustal 
movements over long periods of time beyond the advent of 
GPS, and thus to better understand crustal activities during 
the seismic cycle in Japan. Moreover, the geoid gives us a 
reference surface for ocean dynamics. An absolute geoid 
model with a sufficient accuracy can yield the absolute 
amount of ocean currents, leading to a better understanding 
of the Kuroshio Current. 

The geoid is defined as the equipotential surface of 
the gravity field corresponding to the mean sea surface and 
an accurate gravity model, if available, can be used to 
determine the geoid accurately. Because of the tectonic 
settings in and around Japan, located in a trench and island 
arc region where four tectonic plates converge, significant 

undulations of the gravity field and accordingly the geoid 
occur over a wide range of spatial scales and make the 
determination of the geoid a complex task. 

The emergence of dedicated-gravity satellite 
missions such as GRACE (launched in 2002) and GOCE 
(planned for launch in March 2009) greatly improves the 
accuracy of the geoid model at long and medium 
wavelengths. These missions provide a global coverage of 
gravity field information with a high absolute accuracy in 
uniform fashion, to spatial resolutions of about 200 km for 
GRACE and 100 km for GOCE. 

Merging the data obtained by these missions with 
dense surface gravity data (land, marine and altimetric data) 
allows us to highlight possible biases of the surface data at 
larger scales and thus to improve the quality of the surface 
data and consequently of a resulting geoid model. Different 
types of gravity field datasets can be combined in a very 
flexible way by using a functional representation of the 
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gravity field based on spherical wavelets. 
In this paper, we first describe how to compute a 

wavelet model of the gravity field, applying iterative 
algorithms to handle a large system of equations. Then, we 
validate our approach with synthetic data. Finally, we apply 
the method to data over Japan.  
 
2. Wavelet representation of the gravity field 
2.1 Wavelet frames 

Wavelets are functions localized in both space and 
frequency. They have been extensively described in the 
literature (for instance, Holschneider (1995) and Mallat 
(2000)). Wavelet theory has been extended to spherical 
geometry for Earth sciences applications (Freeden et al., 
1998; Holschneider et al., 2003). Here we use Poisson 
multipole wavelets on the sphere, following Holschneider et 
al. (2003). Because those wavelets can be identified as 
equivalent multipolar sources of gravity within the Earth, 
they are well suited to represent the potential field of the 
Earth’s gravity. A wavelet family is constructed with two 
parameters: a scale parameter (defining the spatial extent), 
and a position parameter (defining the location). Fig. 1 
shows two examples of such wavelets on the sphere having 
large and small scale parameters.  

 

 

Fig. 1 Two Poisson multipole wavelets of order 3 on the sphere. 

 
The Earth’s gravity potential can be represented as a 

linear combination of wavelets properly sampled in scale 
and position. We construct a family of multipole wavelets of 
order 3, following Chambodut et al. (2005) and Panet et al. 
(2006). 

A selection of scales should be made in order to 
provide a regular coverage of spectrum. Because the sphere 
is bounded, the wavelets at different scales are not truly 
dilated versions of each other. However, they behave so 
when the scale becomes small. On a given scale, all wavelets 
are rotated copies of each other. 

Regarding the position parameter, wavelets are 
sampled with their central locations at the vertices of a 
spherical mesh. The number of wavelets must increase as the 
scale decreases, because the dimension of the harmonic 
spaces to generate increases. The spherical meshes therefore 
become finer as the scale decreases. The mesh on each scale 
should be chosen so that the wavelets have as regular 
coverage of the sphere as possible. For local modeling 
applications, the target area is limited and we may build 
simple meshes whose vertices are sampled regularly in 
longitude and latitude. 

A family of wavelets thus sampled forms a frame; its 
representation may be redundant. The frame (over-) 
completeness can be estimated by approximating the 
wavelets to band-limited functions and by comparing the 
number of wavelets approximated in different wavelength 
bands with the dimensions of the corresponding harmonic 
spaces (Holschneider et al., 2003). Panet et al. (2004) and 
Chambodut et al. (2005) discuss the spectral coverage of this 
family of wavelets and show that our selection (described in 
detail later in section 4.1) is over-complete at an estimated 
redundancy of 1.4 to a spatial resolution of 10 km. 
 
2.2 Consideration for application to local gravity field 

modeling 
We should make some special consideration for 

applications to local gravity field modeling. Various kinds of 
data, with different spatial coverage and different error 
characteristics, are to be combined. Among them are gravity 
anomalies measured locally on the Earth's surface and 
measurements on board satellites at the altitude of the 
satellite orbits. In the following, we presuppose that there are 
two data sets available: a set of local high-resolution gravity 
anomalies and a global geopotential model expanded in 
spherical harmonics complete to degree and order 120, from 
dedicated-gravity satellite missions. From the latter we 
compute and use as a second set of data geopotential values 
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at the ground level in the area considered. Since the 
geopotential model contains much more reliable signals at 
longer wavelengths than local gravity anomaly data, we 
extend the data area of geopotential values by two degrees in 
each of four directions (north, south, east and west) as 
compared to the gravity anomaly data coverage. 

Wavelengths longer than the extent of the data 
coverage will not be reliably recovered from local data and 
we use solely the global geopotential model at its lower 
frequency parts in the resulting model. Then, in the gravity 
field modeling, we take data residuals from the lower parts 
of the geopotential model and combine them by a 
wavelet-based method. In the representation of the residual 
gravity field, therefore, we should include wavelets at scales 
no larger than a half of the computation area size. To better 
constrain the wavelet coefficients from local data, we limit 
wavelets to scales no larger than about a fourth of the area 
width. 
 
2.3 Computation of wavelet coefficients 

A least-squares inversion of the datasets is applied to 
computation of the wavelet coefficients. Since the gravity 
potential is written as a linear combination of wavelets, the 
observation equations for each dataset, i, are derived from 
the functional relation between the data type and the gravity 
potential. In matrix notations, this reads Ai  x = bi, where bi 
is the measurement vector, Ai the design matrix, and x the 
coefficients to be determined. This leads to the normal 
equations: for a dataset, i, we have Ni  x = fi, where Ni = Ai

t  
Wi  Ai is the normal matrix, Wi is the weight matrix based on 
the supposed measurement noise, and fi = Ai

t  Wi  bi is the 
associated right hand side. The normal equations are 
summed up for all datasets to form the global system and a 
regularization matrix, K is added with a parameter,  : 
 

( N +  K )  x = f 
 
with N = i Ni and f = i fi. The size of the normal equation 
system is Nw  Nw, where Nw is the total number of wavelets. 
We denote G = N +  K the regularized normal matrix. 

The regularization is introduced for two reasons. 
First, the characteristics of the measurements lead to an 
ill-posed problem. Physical a-priori information may be 

needed to define the regularization matrix. Usually a 
condition expressing the spectral decrease of the field's 
energy is used (Chambodut et al., 2005; Panet et al., 2004). 
In the case of satellite data handling, the ill-posedness in the 
downward continuation may be regularized by the use of a 
surface dataset. Second, if the wavelets form a frame, there 
exists no unique solution, x to the problem because of the 
redundancy of the representation. In such cases, one has to 
add a purely numerical regularization, for instance, a 
Tikhonov regularization, to impose a unique solution. This 
numerical regularization, however, will interfere with the 
physical one. 
 
3. Domain decomposition methods 
3.1 Definition of the sub-domains 

To solve the large system of equations, we use an 
iterative approach together with data compression, following 
domain decomposition methods. The interested reader may 
refer to Chan and Mathew (1994) and Xu (1992) for a 
detailed presentation of domain decomposition algorithms. 
We recall here the main principles. 

Let us introduce the space H = L2() generated by 
the wavelet family, where  is the mean Earth sphere. When 
we compute a wavelet model by the least-squares adjustment 
of data, we actually project the data on H. We may split this 
space H into smaller non-overlapping sub-spaces {H{i,0}; 
i=1,...,p}, called sub-domains, so that we have:  





p

i
iHH

1
}0,{

. The sub-domains are spaces generated by 

subsets of wavelets and, by taking advantage of the good 
localization of the wavelets in space and frequency we 
define our sub-domains in the following way.  

We first split H into non-overlapping sub-spaces 
{H{ai,0}; i=1, ..., Nscales}, where H{ai,0} is made by all wavelets 
on scale ai; we refer to them as scale sub-domains. If 
sub-domain H{ai,0} is still composed of a large number of 
wavelets, we split it again into non-overlapping sub-domains 
of smaller size {H{ai,0}{j,0}; j = 1, ..., Nblocks(i)}. These 
sub-domains are generated by subsets of wavelets at scale ai, 
and their union corresponds to space H{ai,0}: 
 

H{ai,0} = j=1
Nblocks(i) H{ai,0}{j,0}. 
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They are referred to as block sub-domains. To be general, let 
us assume that all scale sub-domains have a block 
sub-domain splitting. We regard Nblocks(i) = 1 if there is only 
one block. The number of blocks may vary depending on the 
scale and one can split space H so that sub-space H{ai,0}{j,0} is 
generated by a not too large number of wavelets (no more 
than a few thousands). 

We may also define an overlapping splitting of  
sub-space H{ai,0} as made of a set of overlapping blocks 
{H{ai,0}{j,(i)}; j = 1, ..., Nblocks(i)}. Overlapping blocks 
H{ai,0}{j,(i)} are obtained by augmenting non-overlapping 
blocks H{ai,0}{j,0} with wavelets located in overlap areas of 
width (i). The size of the overlap area (i) obviously 
depends on the scale ai. However, for simplicity of notation, 
we will refer to it as  here. It is also possible to define a set 
of overlapping scale sub-domains, by extending sub-domain 
H{ai,0} with the wavelets on adjacent scales ai-1 or ai+1. Let us 
note n{ai,0}{j,} the number of wavelets that generate H{ai,0}{j,}. 

Let us now introduce the projection and extension 
operators between H and the sub-domains. In the following, 
we will work in the space of wavelet coefficients l2(), 
where  l2() = { x; ||x2|| = n |x[n]|2 < + } and identify 
sub-domains H{ai,0}{j,} with subsets of wavelet coefficients. 
With each sub-domain, we associate a rectangular matrix, 
R{ai,0}{j, }

t of size N  n{ai,0}{j, }. This matrix is the extension 
by  Nw – n{ai,0}{j, } counts of zeros to a vector x of size 
n{ai,0}{j, } that belongs to H{ai,0}{j, }. Its elements are thus 1 or 
0. The transpose of this matrix is the restriction matrix to 
sub-domain H{ai,0}{j, }. It acts on a vector of size Nw, and 
projects it on H{ai,0}{j,} by holding only the entries that 
belong to H{ai,0}{j,}. We also define restricted extension 
operators by: 
 

R̂ {ai,0},{j,}
t = R{ai,0}{j,0}

t  R{ai,0}{j,0}  R{ai,0}{j, }
t 

 

Matrix R̂ {ai,0}{j, }
t acts on a vector x{ai,0}{j, } of size n{ai,0}{j, } 

that belongs to H{ai,0}{j, }, projects it on non-overlapping 
sub-domain H{ai,0}{j,0} by eliminating all elements in the 
overlap area, and extends it by adding zeros to a vector x of 
size Nw. Finally, it is also possible to apply weights when 
extending vectors from H{ai,0}{j,} to H, leading to a weighted, 
restricted extension operator: 
 

R {ai,0}{j,}
t = w  R{ai,0}{j,0}

t  R{ai,0}{j,0}  R{ai,0}{j, }
t 

 
where w(p) is the inverse of the number of overlapping 
blocks to which the p-th entry of x{ai,0}{j, } belongs (it 
corresponds to the redundancy of the computation due to 
overlap). Now, instead of solving the normal system directly 
by projecting the data on H, we will project them on the 
sub-domains, derive partial sub-domain solutions involving 
a part of the wavelet coefficient vector x, and progressively 
build the global solution x by iterating the process. Such 
iterative algorithms are known as Schwarz algorithms.  
 
3.2 Principle of the Schwarz algorithms 

Let us start with the non-regularized case, where the 
normal system to solve is: N  x = f.  

The projection of the normal matrix N on 
sub-domain H{ai,0}{j, } reads: 
 

N{ai,0}{j, } = R{ai,0}{j, }  N  R{ai,0}{j, }
t 

 
It is actually a block of N, comprising the entries related to 
the wavelets generating sub-space H{ai,0}{j, }. 

Starting from an initial guess of the solution, we 
build a sequence of estimate xk+1 = xk + M  (f - N  xk). In the 
parallel (additive) version of the algorithm, matrix M is: 

 
     M =  

i=1
Nscales j=1

Nblocks(i) R {ai,0}{j,}
t N{ai,0}{j, }

-1 R{ai,0}{j, } 
 
In other words, we first project the right hand side on 
H{ai,0}{j,} and update it from previous estimates of solution:   
 

f{ai,0}{j, }
k = R{ai,0}{j, }  ( f - R{ai,0}{j, }  N  xk ) 

 
Note that the update matrix R{ai,0}{j, }  N is actually a band of 
N. Then, we solve the problem locally: 
 

N{ai,0}{j, }  x{a_i,0}{j, }
k+1 = f{ai,0}{j, }

k 
 

The last step is to extend the obtained coefficient 
vector x{ai,0}{j,}

k+1 to the full size Nw: 
 

Ext [ x{ai,0}{j, }
k+1] =  R {ai,0}{j, }

t  x{ai,0}{j, }
k+1 . 
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At the end of the (k+1)-th iteration, we add all extended 
sub-domain solutions Ext [x{ai,0}{j,}

k+1] to derive the global 
vector xk+1, and we iterate the process. 

In this version of the algorithm, all sub-domains are 
computed simultaneously, the global solution xk+1 being 
updated only after all (k+1)-th iterations of the local solution 
end. This parallel (also called additive) version of the 
algorithm converges more slowly than the sequential version 
(also called multiplicative), in which the global solution xk+1 
is updated immediately after a sub-domain solution 
x{ai,0}{j,}

k+1 becomes available, and the (k+1)-th iteration of 
the next sub-domain solution is computed only after the 
global solution has been updated. 

It is interesting to mix parallel iterations with 
sequential ones to find a hybrid algorithm with good 
convergence and parallelization properties. We thus carry out 
sequential iterations over the scale sub-domains and on a 
given scale we carry out parallel iterations over the blocks. 
This is the reason why we do not use overlapping scale 
sub-domains, but make use of overlapping blocks. The 
overlap speeds up the convergence in the parallel iterations, 
which converge more slowly, whereas the sequential 
iterations over scales, which converge faster, can be carried 
out without overlap. 

Such a method will converge quickly if the 
sub-domains are not too correlated, reflecting the sparse 
structure of the normal matrix. In the case of wavelets that 
are well localized in both space and frequency, matrix N is 
sparse and, therefore it is quite appropriate for a hybrid 
algorithm to be used. Wavelets with different scales and 
positions are indeed not correlated too much.  

Finally, there are many ways to iterate sequentially 
over the scales, which lead to more or less fast convergence. 
Fig. 2 shows the most widely used iteration sequences of the 
multi-level iterative approximation schemes called multigrid 
methods. Multigrid methods (Wesseling, 1991) are based on 
the resolution of successive projections of the normal system 
on coarse or fine grids, applying multi-level Schwarz 
iterations between sub-domains corresponding to the grids. 
In that respect, they are rather similar to a multi-scale 
resolution using wavelets. Consequently, we can design 
iteration schemes over the wavelet scales following the 

classical V-, W- and FMG-cycle iteration schemes of the 
multigrid algorithms. 
 

 
Fig. 2 Iteration schemes over the wavelet scales: V-cycle, W-cycle 

and FMG-cycle. 

 
3.3 Approximations of the sub-domain normals 

As we progressively refine our solution during the 
iteration process, we do not need to use exact sub-domain 
normal matrices at the beginning of the process, but apply 
adequate approximations to the sub-domain normals. For 
that, we follow the approach by Minchev et al. (2008). We 
construct a three-dimensional (3D), spherical tiling of the 
space on and outside of the Earth’s sphere and approximate 
locally the values of the wavelets within each elementary tile, 
also called a 'cell' in the following. The 3D tiling is based on 
a spherical mesh and its radial extension. The 3D space is 
divided into radial layers of triangular prism cells sectioned 
by this mesh, so that the cells are neither too elongated nor 
too flat. The spherical mesh is derived by subdividing the 
facets of a regular icosahedron with respect to the sphere. 
For more details about this construction, the reader is 
referred to Chambodut et al. (2005). We obtain a very 
regular tiling with no singularity at the poles. Depending on 
the level of subdivision, one may obtain different level of 
fineness of the mesh. 

There are different ways to approximate the wavelets 
locally within the cells. One may consider 3D Taylor series 
development at varying orders with different precision of 
approximation or simple averaging. The use of order-0 
development or averaging actually projects the normal 
system on a 3D-grid and can be viewed as data filtering in 
the cell. Then, the precision of approximation should be 
adjusted depending on the wavelet scale to be computed. On 
each scale, we associate a mesh at a resolution similar to the 
wavelet scale. 

As we progress in iteration, we gradually refine the 
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approximations of the sub-domain normals at all scales. 
Namely, as the sub-domain solutions at finer and finer scales 
become available, the solutions at the coarser scales have to 
be updated on a precision level compatible with the desired 
precision of the overall solution. 
 
3.4 Scale-dependent reweighting to data 

If the noise of the data is white, the weight associated 
with the data is the same on all scales and the weight matrix 
Wi is equal to i I. However, this is not always fully realistic 
and we may need to consider a colored noise model. Let us 
suppose that matrix Wi is expressed in a quadratic form C(r, 
r1) with a colored spectral behaviour corresponding to the 
inverse of the power spectral density of the noise:  
 

C(r, r1) = l cl Pl(r  r1) 
 
where Pl is the Legendre polynomial of degree l and r and r1 
are two point vectors on the Earth's surface. Then, the 
normal matrices Ni are the discrete scalar products of the 
wavelets with the scalar product defined by this quadratic 
form. Assuming the quality of different datasets varies with 
different wavelength-bands, the normal matrix can be 
written in a very rough way by using scale-dependent 
constant weights. This allows us to accomplish a spectral 
combination of the datasets with rough consideration of their 
various spectral error characteristics. 
 
3.5 The regularization 

The algorithm may be directly applied to the 
regularized normal system. However, in the case of handling 
a large number of blocks and wavelet coefficients, the 
condition number of the normal matrix should be small 
enough in order for the solution to converge fast. This may 
require increasing the weight of the regularization matrix 
especially for high-resolution surface datasets, more than 
what one expects. Consequently, we choose to apply an 
iterated regularization approach (Engl, 1987). In such an 
approach, the regularized normals G  x = f are solved for the 
sub-domains, but the right hand side is updated by using the 
non-regularized normals N. This is equivalent to a 
progressive removal of the initial regularization as the 
iteration continues, the regularization being finally controlled 

by the number of iterations. 
 
4. Validation with synthetic data 
4.1 White noise case 

We first validate this approach with synthetic data 
over Japan. Two sets of synthetic data are prepared for that 
purpose. 

The first one is a set of gravity potential values as 
given by EGM2008 (Pavlis et al., 2008), up to complete 
degree 120 (~170 km resolution): 5448 synthetic data on the 
ground level regularly distributed in the area between 
latitudes 27°N to 47°N and longitudes 131°E to 151°E. 
White noises (RMS = 1 m2/s2) are added. This noise level is 
a little lower than that of the satellite-only geopotential 
models as given by their error spectra up to degree/order 
120. 

The second dataset is a 3 by 3 minute grid of 103,041 
free-air gravity anomalies on the ground level, also 
computed from EGM2008, over the area between latitudes 
29°N to 45°N, and longitudes 133°E to 149°E. The 
resolution of this grid (5.5 km) corresponds to typical 
resolutions of surface gravity data and, accordingly, we can 
validate the approach under realistic situations. However, in 
order to simplify our test, the grid gravity anomalies are 
smoothed by truncating EGM2008 to degree 1000, and by 
applying damping starting at degree 730 with a half 
amplitude at degree 835. This corresponds to a spatial 
resolution of about 24 km. Finally, white noise is added to 
the dataset. At the resolution of the computed wavelet model 
(about 15 km), the amplitude of the noise is 0.35 mGals. As 
mentioned above, the low-frequency components of 
EGM2008 have been removed from both datasets. Fig. 3 
shows the geographical distribution of the synthetic data. 

The wavelet frame used is composed of five levels of 
scales as given in Table 1. Scales of the wavelets are about 
300, 150, 75, 38 and 20 km, corresponding to the depths of 
the equivalent multipolar sources below a sphere of radius 
6370 km, the average Earth radius. Because of the ellipticity, 
the depths with respect to the Earth’s ellipsoid vary in a 
range of  3 km in the studied area, modifying slightly the 
wavelet scales on the ground level. Although the finest scale 
of the wavelets is 20 km, the wavelets can capture signal 
down to about 15 km resolution, because of the smooth 
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Table 1 Scales of wavelets in wavelet frames used in local modelling 
Level Scale 

(dimensionless) 
Spatial scale 

(km) 
Number of 
wavelets 

Area covered 

6 
7 
8 
9 

10 

0.046875 
0.023438 
0.011719 
0.005859 
0.0029297 

300 
150 
75 
38 
20 

380 
1406 
2401 
9604 

38220 

25/49°N, 129/153°E 
25/49°N, 129/153°E 
29/45°N, 133/149°E 
29/45°N, 133/149°E 
29/45°N, 133/149°E 

 
decay of their spectrum. Finally, let us underline that, in 
the preparation of the synthetic potential data, we truncate 
EGM2008 at degree 120. Accordingly, we should also 
truncate the spherical harmonics expansion of the 
wavelets at the same degree for consistency. On the other 
hand, the anomaly data are treated as real observations 
independent of the potential data (though we apply a 
damping at the highest degrees to reduce the aliasing 
effects in the analysis). Therefore, we do not need to 
truncate the harmonics expansion of the wavelets in the 
construction of the gravity anomalies observation 
equations.  

On levels 8, 9 and 10, the area is divided into 4, 16 
and 36 blocks, respectively, and the computation of the 
wavelet coefficients are made in each block. Regarding 
the iteration scheme, we first test one FMG-cycle. At each 
step of the cycle the data are reduced in cells at a 

resolution corresponding to the finest wavelet scale that 
has been already computed. 

Next, we apply about 40 V-cycles without any 
data reduction. On the finest scale, the total number of 
cells exceeds slightly the number of data themselves and, 
consequently, the projection of the data on the sub-domain 
becomes meaningless. On each scale, the number of block 
iterations ranges from a few tens to a few hundreds when 
there is more than one block. The weights to the data are 
given homogenously in space according to the noise level. 
In the spectral domain, larger weights are assigned to the 
geopotential data at the largest scales and to the anomaly 
data at the smaller scales. Wavelet coefficients from each 
of the two data sets are combined to yield a final wavelet 
model using the group redundancy numbers of the 
associated sub-domain normals (Schwintzer, 1990; Ilk et 
al., 2002). 

Fig. 3 Geographic distribution of the synthetic data. Left panel: potential data; Right panel: gravity anomaly data. 
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Fig. 4 Geographic distribution of residuals of the synthetic data. Left panel: potential residuals to degree 120. Right panel: gravity anomalies 

residuals at 15 km resolution. 

Fig. 5 Histograms of residuals of the respective synthetic data. 

Top panel: potential residuals at degree 120. 

Bottom panel: gravity anomalies residuals.

Fig. 6 Colored noise added to the gravity anomaly data.
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The residuals of the respective data sets are shown 
geographically in Fig. 4 and their histograms are given in 
Fig. 5. The RMSs of residuals as in Fig. 5 are well 
restored to the applied noise levels and indicate a good 
performance in iteration: 1.02 m2/s2 with an average of 
0.03 m2/s2 for the potential data, and 0.36 mGals with an 
average of 0.01 mGals for the gravity anomaly data. The 
spatial pattern of the residuals seems to be that of white 
noise in both the potential and gravity anomaly data. 

Only slightly noticeable is the feature with a larger 
amplitude around east Hokkaido, where EGM2008 (and 
the actual gravity field) contains strong signals at high 
frequencies. During the iteration process we learn that the 
residuals there show a small, but systematic trend of some 
0.05 mGals in amplitude at earlier stages of iteration, but 
such a trend has gradually disappeared as iteration goes. 
 
4.2 Colored noise case 

As a second validation with synthetic data, we 
assume the existence of realistic systematic errors as 
colored noise in the anomaly data. Such types of errors 
may exist near the coasts in altimetry-derived gravity 
anomalies or in ship-borne gravity surveys. Then, we 

additionally append such errors as shown in Fig. 6 to the 
free-air gravity anomaly data, but we do not modify the 
potential data, both obtained in the preceding section. The 
same analysis as that in the previous section is carried out 
on these data. 

After completion of the one FMG-cycle iteration, 
the residuals of the respective data are shown 
geographically in Fig. 7. Notable patterns at large scales 
are found correspondingly to the location of the colored 
noise. The spatial pattern of the residuals of the gravity 
anomaly data looks smoother than that of the appended 
noise, whereas the residuals of the potential data seem to 
contain smaller scale components of the original noise. 
This reflects the difference in the spectral weight 
assignment to the two datasets. On the largest scale almost 
no weight is given to the gravity anomaly data and large 
residuals should appear in the anomaly data, whereas on 
wavelet scales 150 km or smaller, larger weights are 
provided to the anomaly data and larger residuals should 
come out in the potential data. 

To improve the hybrid model, we try to apply 
downweights to the gravity anomaly data based on the 
map of the smoothed residuals. The resulting weight 

Fig. 7 Geographical distribution of residuals of the synthetic data. Left panel: potential residuals up to degree 120. Right panel: gravity 

anomalies at 15 km resolution. 
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reduction model is shown in Fig. 9. By using the 
downweight model thus obtained, we perform two more 
V-cycles of iteration. 

Fig. 8 displays the geographical distribution of the 

residuals of the two data sets. We observe no clear pattern 
in the residuals of the potential data, but a pattern of white 
noise. The RMS of the residuals is compatible to the level 
of the assumed white noise. The residuals of the gravity 
anomaly data become less smooth than that of Fig. 7, and 
much closer to the pattern of the appended noise as in Fig. 
6. This indicates the effectiveness of downweighting in 
the reduction of error contamination in the combined 
model derived if the residuals are identified to attribute to 
systematic errors. We conclude, therefore, that our choice 
of weights was reasonable, leading to a fairly good model 
given the synthetic data characteristics, and that the 
method developed is valid for local gravity field modeling 
from different sets of data with different error 
characteristics. 

Note that increase in weights at intermediate 
scales of the potential data did not improve the resulting 
model. At those scales the anomaly data contain reliable 
signals, but are assigned to smaller weights, leading to 
adjust (worsen) the anomaly data fitted to the pattern, if 
any, of white noise in the potential data. 

It is important to recognize that the pattern of the 
gravity anomaly residuals does not perfectly reproduce 

Fig. 8 Geographical distribution of residuals of the synthetic data after applying downweights to the anomaly data. Left panel: potential 

residuals up to degree 120. Right panel: gravity anomalies at 15 km resolution.

Fig. 9 Downweighting to the gravity anomaly dataset. 


