平成 20 年(2008 年)岩手・宮城内陸地震に対する地理調査部の取り組み Responses of Geographic Department of GSI to the Iwate-Miyagi Nairiku Earthquake in 2008

地理調査部 木佐貫順一・関口辰夫・坂井尚登・野口高弘・田崎昭男 Geographic Department Junichi KISANUKI, Tatsuo SEKIGUCHI, Hisato SAKAI, Takahiro NOGUCHI and Akio TASAKI

要 旨

平成20(2008)年6月14日午前8時43分頃,岩 手県内陸部を震源とする地震(M7.2,深さ約8km) が発生し,宮城県栗原市,岩手県奥州市において震 度6強を記録し,地すべり,斜面崩壊,河道閉塞な どの被害が多数発生した.

地理調査部では、地震直後に地理調査部災害対策 実施要領に基づき災害対策班を設置し、被害情報の 収集を開始した.その結果を災害概況図としてとり まとめを行った.また、6月16日には栗原市を中心 とする地域に緊急現地調査班を派遣し、GPS機能付 き携帯電話で現地の写真を、電子国土Webシステム を利用した情報集約マップに送信した.さらに、測 図部等が緊急撮影した空中写真により被害状況の判 読を行い、地形との相関関係を解析した.

本報告は,地理調査部が実施した平成20年(2008 年)岩手・宮城内陸地震(以下,「岩手・宮城内陸地 震」という)に関する現地調査と「平成20年(2008 年)岩手・宮城内陸地震災害状況図」(以下,「災害 状況図」という)作成等の取り組みの概要をまとめ たものである.

1. はじめに

地理調査部では,昭和23 (1948)年の福井地震以降,平成19年 (2007年)新潟県中越沖地震にいた る地震災害に対して,現地調査,写真判読作業等を 行い,災害状況と地形の関係について調査するとと もに災害状況の把握のため災害状況図を作成してき た.

東北地方では,昭和53 (1978)年の宮城県沖地震 以降,宮城県沖地震(平成15 (2003)年),宮城県 北部地震(平成15 (2003)年),宮城県沖地震(平 成17 (2005)年)と大地震が発生している(図-1). 今回の岩手・宮城内陸地震においても震度6強を記 録した.

2. 岩手・宮城内陸地震の概要

2.1 地震の概要

岩手県内陸部(北緯 39 度 01.7 分, 東経 140 度 52.8 分, 震源の深さ約8km)を震源とする岩手・宮城内

図-1 近年発生した東北地方の大地震

陸地震が発生した.各地の震度は,宮城県栗原市, 岩手県奥州市で震度6強,宮城県大崎市で震度6弱 を観測した.

また,同日午前9時20分頃に宮城県大崎市で震度 5弱(最大余震:M5.7)の地震を観測した.その後 も小規模な余震活動は活発であった(図-2).この 地震による地殻変動として,秋田県湯沢市で東南東 へ約29cm,岩手県平泉町で西北西へ約15cmの水平 変動を検出し,震央に近い電子基準点「栗駒2」(宮 城県栗原市)で約208cmの隆起と約154cmの水平変 動を検出した.

2.2 被害の概要

被害は,岩手県一関市,奥州市,宮城県栗原市に 集中しており,人的被害は死者 13 名,行方不明 10 名,重軽傷 450 名,住家被害では全壊 28 棟,半壊 112 棟,一部破損 1,693 棟である(8月8日現在, 消防庁).

土砂災害は、4県6市で48件の土石流、地すべり、 がけ崩れが確認された.また、この土砂災害により、 岩手・宮城県境の栗駒山周辺においては、4河川15 箇所に河道閉塞が確認された(7月30日現在、国土 交通省).

3. 災害概況図の作成

地理調査部では,災害の全体像を把握するために 災害概況図を作成した。防災センター等関係機関及 び報道機関等からの情報を編集し,速報1(6月14 日10時30分) ~速報26(6月23日14時30分) を作成した.速報1~速報8は,縮尺1/100万(図 -3),速報9~速報23は,縮尺1/50万(図-4), 速報24からは縮尺1/20万と,被害域の特定に合わ せて基図を変更した.また,速報25では,主な河川 名を追加した(図-5).速報4(6月23日12時 30分)からは国土地理院ホームページで順次公表し た.

災害概況図は,内閣府災害対策関係省庁連絡会議, 国土交通省災害対策本部会議等に提供し,文字情報 による災害情報が多い中,地図による情報として,

図-3 災害概況図(速報8)基図縮尺100万分1

また,共通の説明資料として積極的に活用され,高い評価を得た.また,測図部の緊急撮影計画用資料 としても利用された.

図-4 災害概況図(速報23)基図縮尺50万分1

図-5 災害状況図(速報25)基図縮尺20万分1

4. 緊急現地調査

4.1 調査地域の地形・地質の概要

調査地域は岩手県南部と宮城県北部との境界を なす栗駒山の東側の山地・丘陵地である(図-6). 栗駒山は第四紀の火山で北側にカルデラや新期の 溶岩流,東側から南側にかけては旧期の溶岩流や火 砕流堆積面が広がっている(宮城県,1992).栗駒 山の北方に焼石岳,栗駒山北東に国見山,南西には 鬼首カルデラの火山斜面が続いている.これらの火 山性斜面には岩手県側の磐井川,宮城県側の迫川~ 三迫川によって深い谷が刻まれ,谷沿いには大小の 地すべり地形が形成されている.火山性斜面の東側 には高度150~300mの丘陵地が分布しており,頂部 には平坦面が広く残されている(図-7).

図-7 調査地域周辺の地形概要とリニアメント

調査地域の地質は、栗駒山から鬼首にかけては、 新第三紀中新世〜鮮新世にかけての凝灰角礫岩や 溶結凝灰岩からなる虎毛山層、小野松沢層などが基 盤となっている(宮城県、1992).その上位には、 一関市の厳美渓を構成する約600万年前に噴出した 火砕流堆積物(土谷ほか、1997)や、その後噴出し た北川溶結凝灰岩、最上位の栗駒山の火山噴出物よ りなる.丘陵地の基盤には新第三紀の砂岩や泥岩が みられる(岩手県、1980).

4.2 緊急現地調査の概要

地震発生後,地表地震断層の地表変位の特徴を把 握する目的で,6月17・18日に地理調査部,東北地 方測量部及び東北大学大学院理学研究科今泉俊文教 授との共同で緊急現地調査を行った.

地表変位は,岩手県奥州市餅転(もちころがし) 地区から一関市枛木立(はのきだち)地区,宮城県 栗原市荒砥沢ダム北方などに断続的に出現した.

ー関市枛木立地区においては、北東-南西方向の 地表変位が集中してみられ、西北西-東南東方向の 圧縮による地表変位が北北東-南南西方向に連続す るのが観察できた(図-8). 写真-1の地点では、 水田の畦道が走向N40°Eで比高40cmの南東側隆起 の垂直変位がみられた.また南西側の水田では、全体 で南東側地盤が北西側地盤に乗り上げる押しかぶせ 構造を伴う隆起が認められた(写真-2).これらの 変位は空中写真でも判読できた(写真-3).

写真-1 枛木立地区の水田・畦道の変状(6月16日撮影)

写真-2 写真-1と同地点の水田の変位(6月16日撮影)

図-6 図-7~図-12の位置

図-8 枛木立地区における地震断層の分布

写真-3 枛木立地区空中写真(6月16日国土地理院撮影)

4.3 地震断層とリニアメントの分布

地震断層やリニアメントは概して北東-南西方 向に分布していた.リニアメントを空中写真から詳 細に判読した結果を図-9に示す.リニアメントの 分布は,調査地域においてほぼ北東-南西方向であ った.餅転地区(A), 枛木立地区(B), 荒砥沢ダ ム北方(C)においても同様の方向にリニアメント が連続する傾向が認められた.

図-9 地震断層とリニアメント

5. 災害状況図の作成と公表 5. 1 作成範囲

地すべり,斜面崩壊等の大き な災害が発生した岩手県一関市 及び宮城県栗原市を中心に,緊 急撮影した空中写真の判読を行 い,災害状況図を作成した.

5.2 使用した空中写真

国土地理院では6月 15, 16, 18 日に緊急のカラー空中写真 撮影を実施し,それぞれその翌 日から写真判読を行った.また, アジア航測(株)が同じく 16, 18 日に撮影した空中写真も併 用した.今回の地震では地形,特 に山地斜面の変化(土砂災害) が多発していることに着目し, 災害状況の判読を行った(写真 -4).

図-10 平成 20 年(2008 年) 岩手・宮城内陸地震災害状況図全図(技術資料D・1-No. 523)

写真-4 写真判読チームによる空中写真の判読作業風 景

5.3 災害状況と災害発生箇所数の抽出

災害箇所を空中写真判読により抽出し,地形図に 移写して災害状況図原稿図を作成し,最終的にデジ タル化して災害状況図とした.なお,表-1に記載し た災害発生箇所数は,災害状況図から計測したもの であり,現地での確認を行ったものではない.

被災状況	箇所数
斜面崩壊(大)	444
斜面崩壊(小)	1,405
地すべり地	52
河道閉塞	15
河道閉塞湛水域	9
土石流	6
道路工作物の破損	3

表-1 災害状況と災害発生箇所数

5. 4 災害状況図の内容

災害状況図は、5.3に記載した災害状況の形状 と位置を表示したほか、震央位置、空中写真判読範 囲も表示した(図-10).

5.5 災害状況図の公表

6月18日には、15日撮影の判読範囲を災害状況 図「暫定版」として記者発表を行い、ホームページ で公表した.19日には「平成20年(2008年)岩手・ 宮城内陸地震情報集約マップ」(以下、「集約マップ」 という.)としてホームページで公表した.その直後 から、NHK や新聞各社からの取材があり、20日夕刻 のNHK のニュース番組で放映された.

また,北部の被災地域についても,アジア航測(株) が6月16,18日撮影の空中写真を用い,7月17日 に集約マップに追加し,ホームページで公表した. 5.6 主要災害箇所の写真判読概要

5. 6.1 荒砥沢ダム北方の地すべり

写真判読により,宮城県栗原市荒砥沢の荒砥沢ダ ム北方において大規模な地すべりが発生したことを 確認した.今回の地震により発生した地すべりの中 で,最も規模が大きく,滑落崖の最大落差 148m, 滑落土塊の移動距離は水平方向で 300m以上に達し た(以下,地形や土量に関する計測数値はいずれも 測図部による.).

この地すべりは,更に巨大な地すべり地形の一部 が再滑動して発生しており,主滑落崖は典型的な馬 蹄形を呈している.

地すべり地内には滑落方向に垂直なリッジ(高ま り)を有する複数の滑落ブロック(分離小丘)が存 在するが,主滑落崖に近い位置の分離小丘と滑落土 塊末端の分離小丘では,様相が大きく異なる.末端の ひときわ大きな分離小丘上の道路が原型をとどめて いるのに対し,主滑落崖側の分離小丘は,分離小丘 間の距離が大きく開いている上,リッジが痩尾根状 になった細長い分離小丘になっている.つまり主滑 落崖側の分離小丘は,細かく分断されているのに対 し,末端の分離小丘は大きな塊のまま滑り落ちたこ とがわかる.

写真-5 荒砥沢ダム北方の地すべりと滑落土塊推定移 動方向 国土地理院撮影空中写真 C6-0969 に加筆

主滑落崖,各分離小丘のリッジ,二次滑落崖など の方向から推定すると,滑落土塊はS字を描いて移 動し,荒砥沢ダム湖北東の斜面に激突し,そこで運 動エネルギーの多くを失って停止したと考えられる. その直後に滑落土塊全体からみれば,ごく一部の土 塊がダム湖に流入した(写真-5,図-11).

図-11 平成 20 (2008) 年岩手・宮城内陸地震災害状況図-10 の一部 荒砥沢ダム北方地すべり周辺

5.6.2 ドゾウ沢岩屑(がんせつ)なだれ/土石流 写真判読によって,宮城県栗原市駒の湯温泉上流,約4.8kmの東栗駒山の山腹斜面,標高1,360m付近 において崩壊が発生したことを確認した.崩壊地の 規模は,東西に約200m,南北に約300m,崩落した 土層の厚さはおよそ30mで土量は150万㎡(東京ド ーム約1.2杯分)と推定されている.

最大高低差 190mの急斜面において崩壊が発生し たことから,崩落土は滑落崖直下で粉砕され,岩屑 の間隙にエアクッションが形成されて岩屑なだれに 移行したと思われる.岩屑なだれ堆積物は,滑落崖 直下の沢を乗り越え,その沢より 90mも高い対岸斜 面を通過してドゾウ沢を流下した.沢の屈曲部で,カ ーブの外側斜面では内側斜面より 60m近くも高い 位置に土砂が到達していることから,岩屑なだれは 非常に高速であったと考えられる(写真-6).

一方,ドゾウ沢下流の裏沢では,駒の湯温泉の対 岸斜面で地すべりが発生し,滑落土塊が裏沢を閉塞, 湛水域を形成した.

ドゾウ沢を流下してきた岩屑なだれが、どの時点 で土石流に変化したのか、確かなことは分かってい ないが、ドゾウ沢から高速で流下してきた土砂が駒 の湯温泉付近に到達した時点では完全に土石流に移 行していた(図-11).

この土石流は地すべりによる閉塞箇所より上流に あった駒の湯温泉に逆流し,温泉宿の建物を直撃し た.これにより死者・行方不明者7名を出す大惨事と なった.

土石流により,駒の湯の前の裏沢には厚さ 30mほ どの土砂が堆積した(写真-7).

写真-6 ドゾウ沢岩屑なだれ/土石流の全景 H20.6.18 撮影:(有)空撮ジオテック・画像提供:国土地図

写真-7 駒の湯を直撃した土石流と裏沢を閉塞した地 すべり 国土地理院撮影空中写真 C2A-0840 に加筆

5.6.3 産女(うぶすめ)川上流の崩壊

写真判読によって,岩手県一関市産女川上流部に おいて大規模な崩壊が発生しているのを確認した. 崩壊地の規模は,荒砥沢ダム北方の地すべりに次ぐ 大きさであった(図-12,写真-8).

今回の地震では、多くの地すべり地形、崩壊地形 において土砂災害が再発生しており、前述の荒砥沢 ダム北方の地すべり同様、この崩壊もそのひとつで ある.

滑落崖の最大高低差は約 140mもあったが,崩落 土砂は幸いなことに岩屑なだれとはならず,崩壊源 より2km下流で停止した(図-12).

図-12 平成 20 年(2008 年) 岩手・宮城内陸地震災害状況図の一部 ドゾウ沢 駒の湯 産女川周辺

ただし,崩落土砂の一部が現在も産女川を閉塞し ている.土量の多さを考えると,大規模な土石流の発 生する可能性があるため,今後も十分な注意を払う 必要がある.

写真-8 産女川上流の崩壊と河道閉塞地点及び湛水域 アジア航測(株)撮影空中写真 012-0452 に加筆

5.7 災害と地形分類

今回の地震における災害は,栗駒山東側の南北約 20kmの範囲に集中していた.この区域は,ほとんど が栗駒山火山の斜面であり,浸食谷や地すべり地形 が多く分布している火山体の開析の前線でもある.

このような場所で地震が発生すれば,崩壊や地す べり,土石流などの土砂災害が発生するのは必然で ある.地形と災害の強い関連性について,二次災害も 含めて改めて留意すべきであろう.

6. まとめ

地理調査部では、6月14日に災害対策班を設置 し、緊急現地調査、災害状況図作成等のための作業 チームを設置・編成した.各作業チームでの活動に は、以下に記す多くの職員が携わった.

災害状況図がテレビ放映され、写真判読による災 害状況把握の有効性が認められた.また、本図は、 国土交通省本省及び地方公共団体防災関連部署へ災 害調査や復旧・復興対策の基礎資料として提供した.

地理調査部では,関係機関が必要とする災害状況 に関わる地理情報の提供が迅速にできたと考えてい る. 今後も,関係機関が必要とする災害情報の提供 を積極的に行って行きたいと考えている. 【作業チーム編成】

- ①緊急現地調査班田中庸夫,関口辰夫,中島秀敏(東北地方測量部),
- 諏訪部順(同),菅原友恵(同),杉田泰紀(同), 本嶋裕介(同)
- ②情報収集チーム及び災害概況図作成チーム 梶川昌三,鈴木義宜,長谷川学,田崎昭男, 赤羽根正夫,野口高弘,松元拓朗
- ③災害状況図原稿図作成チーム

梶川昌三, 関口辰夫, 木佐貫順一, 長谷川学,

- 坂井尚登, 新西正昭, 安喰 靖, 稲澤保行,
- 廣瀬 勝,三谷麻衣,吉武勝宏,植田摩耶,
- 高橋広典,沼田佳典,斎藤俊信
- ④災害状況図電子国土版作成チーム 野口高弘,松元拓朗,安部雅俊
- 参考文献
- 気象庁(2008):「平成20年(2008年)岩手・宮城内陸地震」の特集,
- http://www.seisvol.kishou.go.jp/eq/2008_06_14_iwate-miyagi/index.html. (accessed 16 Sep. 2008) 岩手県 (1980): 土地分類基本調査「栗駒山」, 33.
- 宮城県(1992):土地分類基本調査「栗駒山・秋ノ宮」,56.
- 関ロ辰夫,小荒井 衛,岩橋純子,神谷 泉,中埜貴元 (2008):空中写真判読と写真測量で把握した平成 20 年岩手・宮城内陸地震の地表変動.日本第四紀学会講演予稿集.
- 土谷信之,伊藤順一,関 陽児,巌谷敏光(1997):岩ヶ崎地域の地質.地域地質研究報告(5万分の1地質 図幅),地質調査所,96.